Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T22:37:43.571Z Has data issue: false hasContentIssue false

SIMULATING THE BEHAVIOUR OF FISSION PRODUCTS IN UO2

Published online by Cambridge University Press:  25 February 2011

Robin W. Grimes*
Affiliation:
Davy Faraday Research Laboratory, The Royal Institution of Great Britain, 21 Albemarle Street, London, WIX 4BS, U.K
Get access

Abstract

Fission products in nuclear fuels exhibit a significant variation in solubility and stability. To understand better the reasons for this variation, the Mott-Littleton simulation technique has been used to calculate solution energies of the fission products Br, Kr, Rb, Sr, Y, Zr, Te, I, Xe, Cs, Ba, La and Ce. Nonstoichiometry and variable charge state are important components of the model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Catlow, C. R. A., Mackrodt, W. C., in Computer Simulation ofSolids Edited by Catlow, C. R. A. and Mackrodt, W. C.. (Springer-Verlag, Berlin, FRG 1982).Google Scholar
2. Leslie, M., SERC Daresbury Laboratory Report DL/SCI/TM31T (1982).Google Scholar
3. Harding, J. H., Harker, A. H., UKAEA Report, AERE-R.10425 (1982).Google Scholar
4. Grimes, R. W., Catlow, C. R. A., Phil. Trans. R. Soc. Lond. A., 335, 609 (1991).Google Scholar
5. Dick, B. G., Overhauser, A. W.,Phys. Rev., 112, 90 (1958).CrossRefGoogle Scholar
6. Catlow, C. R. A., Stoneham, A. M., Guest editors, Special issue of J. Chem. Soc. Faraday Trans., 85(5), 1989.Google Scholar
7. Harker, A. H., Grimes, R. W., Guest editors, Special issue of Mol. Sim., 4(5) and 5(2), 1990.Google Scholar
8. Kovba, L. M., Dokl. Chem. (Engl. Trans.), 194, 6342 (1970).Google Scholar
9. Latta, R. E., Fryxell, R. E., J. Nucl. Mat., 35, 195 (1970).Google Scholar
10. Catlow, C. R. A.,Proc. R. Soc. Lond A., 364, 473 (1978).Google Scholar
11. Ball, R. G. J., Grimes, R. W., J. Chem. Soc. Faraday Trans., 86, 1257 (1990).Google Scholar
12. Matzke, Hj., Blank, H., J. Nucl. Mat., 166, 120 (1980).Google Scholar
13. Kleykamp, H., J. Nucl. Mat, 131, 221 (1985).Google Scholar
14. Phillips, J. R., Waterbury, G. R., Vanderborgh, N. E., J. Inorg. Nucl. Chem., 36, 17(1974).Google Scholar
15. Kleykamp, H., Paschoal, J. O., Pejsa, R., Thommler, F., J. Nucl. Mat., 130, 426 (1985).Google Scholar
16. Moore, C. E., Atomic Energy Levels, Nat. Bur. Stand. Ref. Data Ser., 35, (U.S., Nat. Bur. Stand.) 1971.Google Scholar
17. C. R. C. Handbook of Chemistry and Physics, D101 (ed. West, R. C.), CRC Press, Boca Raton, 65th edn. 1984.Google Scholar
18. Grimes, R. W., Ball, R. G. J., Catlow, C. R. A., submitted to J. Phys. Chem. Solids.Google Scholar
19. Grimes, R. W., UKAEA Report, AEA-InTec-0195 (1990).Google Scholar
20. Ball, R. G. J., Grimes, R. W., submitted to Phil. Mag..Google Scholar
21. Ball, R. G. J. and Dickens, P. G., J. Mater. Chem., 1, 105 (1991).Google Scholar