Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T10:40:48.523Z Has data issue: false hasContentIssue false

Single Nanoparticle Detection using on-chip Notched Ring Resonator

Published online by Cambridge University Press:  07 March 2011

S. Wang
Affiliation:
Massauchusetts Institute of Technology, Cambridge, MA 02139
Y. Yi*
Affiliation:
Massauchusetts Institute of Technology, Cambridge, MA 02139 New York University, New York, NY 10012 CUNY Graduate Center, New York, NY 10016
*
Get access

Abstract

A new photonic structure was demonstrated to achieve strong optical coupling between nanoparticle and photonic molecule by utilizing a notched micro ring resonators. By creating a notch in the ring resonator and putting a nanoparticle inside the notch, large spectral shifts and splittings at nm scale can be achieved, compared to only pm scale observed by fiber tip evanescently coupled to the surface of microsphere, thereby significantly lowered the quality factor requirement for single nanoparticle detection. The ability for sorting the type of nanoparticles due to very different mode shift and splitting behavior of dielectric and metallic nanoparticles is also emphasized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, W. D., Chou, S. Y., Opt. Exp. 18, 931 (2010)Google Scholar
2. Little, B. E., Chu, S. T., and Haus, H. A., Opt. Lett., 23, 1570 (1998)Google Scholar
3. Boriskina, S. V., J. Opt. Soc. Am. B, 23, 1565 (2006)Google Scholar
4. Yariv, A., Xu, Y., Lee, R. K., and Scherer, A., Opt. Lett. 24, 711713 (1999)Google Scholar
5. Song, Q., Cao, H., Ho, S. T., and Solomon, G. S., Appl. Phys. Lett., 94, 061109 (2009)Google Scholar
6. Francois, A. and Himmelhausa, M., Appl. Phys. Lett., 92, 141107 (2008)Google Scholar
7. Gorodetsky, M. L., Pryamikov, A. D., and Ilchenko, V. S., J. Opt. Soc. Am. B, 17, 1051 (2000)Google Scholar
8. Yuan, Z., Kardynal, B. E., Stevenson, R. M., Shields, A. J., Lobo, C. J., Cooper, K., Beattie, N. S., Ritchie, D. A., and Pepper, M., Science, 295, 102 (2002)Google Scholar
9. Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Paul Alivisatos, A., Science, 281, 2013 (1998)Google Scholar
10. Loo, C., Lin, A., Hirsch, L., Lee, M., Barton, J., Halas, N., West, J., Drezek, R., Technol. Cancer Res. Treat., 3, 33 (2004)Google Scholar
11. Wiese, R., Luminescence, 18, 25 (2003)Google Scholar
12. Mazzei, A., Gotzinger, S., Menezes, L. de S., Zumofen, G., Benson, O.,1, and Sandoghdar, V., Phys. Rev. Lett., 99, 173603 (2007)Google Scholar
13. Borselli, M., Johnson, T. J., and Painter, O., Opt. Exp., 13, 1515 (2005)Google Scholar
14. Gondarenko, A., Levy, J. S., and Lipson, M., Opt. Exp. 17, 11366 (2009)Google Scholar
15. Hosseini, E. S., Yegnanarayanan, S., Atabaki, A. H., Soltani, M., and Adibi, A., Opt. Exp., 17, 14543 (2009)Google Scholar
16. Koch, B., Yi, Y., Zhang, J., Znameroski, S., and Smith, T., Appl. Phys. Lett., 95, 201111 (2009)Google Scholar
17. Barwicz, T., Popovic, M. A., Rakich, P. T., Watts, M. R., Haus, H. A., Ippen, E. P., and Smith, H. I., Opt. Exp., 12, 1437 (2004)Google Scholar