Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-30T17:16:47.175Z Has data issue: false hasContentIssue false

SiO2 Entrapment of Animal Cells for Hybrid Bioartificial Organs

Published online by Cambridge University Press:  01 February 2011

Giovanni Carturan
Affiliation:
Department of Materials Engineering, 38050, TN
Renzo Dal Monte
Affiliation:
I.R.B. 36077 Altavilla V.na VI
Maurizio Muraca
Affiliation:
Department of Medical and Surgical Sciences, 35100 PD, Italy
Get access

Abstract

Si-alkoxides in gas phase are reactive towards the surface of animal cells, depositing a homogeneous layer of porous silica. This encapsulation method preserves cell viability and does not alter the hindrance of the biological load.

In the prospective use for the design of a hybrid bioartificial liver, hepatocytes in a collagen matrix can be entrapped by the siliceous deposit which provides definite mechanical stability to the collagen matrix and molecular cutoff vs. high molecular weight proteins, including immunoglobulins. The functionality of the encapsulated cell load is maintained for the expressions of typical liver and pancreas metabolic activities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Colton, C.K., Engineering challenges in cell-encapsulation technology, 14 158 (1996);Google Scholar
Lysaght, M.J., Frydel, B., Gentile, F., Emerich, D. and Winn, S., J. Cell. Biochem., 56 196 (1994);Google Scholar
McGuire, B.M., Sielaff, T.D., Nyberg, S.L., Hu, M.Y., Cerra, F.B. and Bloomer, J.R., Dig. Dis.,, 13 379 (1995).Google Scholar
2. Inama, L., Dirè, S., Carturan, G. and Cavazza, A., J. Biotechnol.,, 30 197 (1993).Google Scholar
3. Rottman, C., Grader, G. S., De Hazan, Y., and Avnir, D., Langmuir,, 12 5505 (1996)Google Scholar
4. Dave, B. C., Dunn, B., Valentine, J. S. and Zink, J. I., Anal. Chem.,, 66 1120 (1994).Google Scholar
5. Carturan, G., Dal Monte, R., Muraca, M., Encapsulation of Viable Animal Cells for Hybrid Bioartificial Organs, PCT International Application, EP n° 9602265, May, 28, 1996.Google Scholar
6. Cappelletti, E.M., Carturan, G. and Piovan, A., USA Patent n° 5.998.162 Dec. 7, 1999.Google Scholar
7. Schmidt, H. and Wolter, H., J. Non Cryst. Solids,, 121 428 (1990).Google Scholar
8. Dirè, S., Pagani, E., Ceccato, R. and Carturan, G., J. Mater. Chem., 7 919 (1997).Google Scholar
9. Campostrini, R., Carturan, G., Cagnato, R., Piovan, A., Filippini, R., Innocenti, G. and Cappelletti, E. M., J. Sol-Gel Sci. and Techn., 7, 8 7 (1996).Google Scholar
10. Carturan, G., Dal Monte, R., Pressi, G., Secondin, S. and Verza, P., J. Sol-Gel Sci. and Technol.,, 13 273 (1998).Google Scholar
11. Bader, A., Knop, E., Böker, K., Frühauf, N., Schüttler, W., Oldhafer, K., Burkhard, R., Pichlmayr, R. and Sewing, K.F., Artificial Organs,, 19 368 (1995).Google Scholar
12. Sglavo, V.M., Carturan, G., Dal Monte, R. and Muraca, M., J. Mat. Sci.,, 34 3587 (1999).Google Scholar
13. Carturan, G., unpublished results. The measurements of τ values were carried out using the same experimental approach ofGoogle Scholar
Powers, M. J., Rodriguez, R. E. and Griffith, L. G., Biotechn. Bioeng.,, 53 415 (1997).Google Scholar
14. Armanini, L., Carturan, G., Boninsegna, S., Dal Monte, R. and Muraca, M., J. Mater. Chem.,, 9 3057 (1999).Google Scholar
15. Dal Monte, R., unpublished results.Google Scholar
16. Divies, C. and Siess, M.H., Eur. J. Appl. Micr. Biotechnol., 12 10 (1981).Google Scholar
17. Muraca, M., Vilei, M.T., Zanusso, G.E., Ferraresso, C., Boninsegna, S., Dal Monte, R., Carraro, P., Carturan, G., Submitted for publication.Google Scholar
18. Carturan, G., Dellagiacoma, G., Rossi, M., Dal Monte, R. and Muraca, M., SPIE Sol-Gel Optics IV, Vol 31–36, 336 (1997).Google Scholar