Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T18:19:08.466Z Has data issue: false hasContentIssue false

Site controlled nucleation of ferroelectric crystals: a step towards lithography modulated self-assembly

Published online by Cambridge University Press:  01 February 2011

P. Muralt
Affiliation:
Ceramics Laboratory, Swiss Federal Institute of Technology EPFL, Lausanne, Switzerland
S. Bühlmann
Affiliation:
Ceramics Laboratory, Swiss Federal Institute of Technology EPFL, Lausanne, Switzerland
S. Von Allmen
Affiliation:
Ceramics Laboratory, Swiss Federal Institute of Technology EPFL, Lausanne, Switzerland
Get access

Abstract

An additive technique for the growth of PZT crystallites in the sub-200 nm range on predefined sites is presented. The method is based on nucleation promotion by TiO2 seeds. Epitaxial (111)-oriented Pt on a SrTiO3 single crystal served as substrate. TiO2 seed sites have been defined by an e-beam lithographic process. The initial Pb flux determines whether (100) or (111) crystallites are obtained. Best results have been obtained with PZT(100) yielding one square grain per site with a narrow size distribution (120 to 150 nm). In this case, the seed collected additional PbO adatoms reaching the seed by diffusion. The sidewalls consist mostly of {110} facets. A model in the frame of classical nucleation theory describes well experimental observations. The piezoelectric response and the ferroelectric switching of the structures have been verified.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cavin, R.K. III, Herr, D.J.C., and Zhirnov, V., An SRC working paper (2003)Google Scholar
2. Wang, Y.G., Zhong, W.L., and Zhang, P.L., Phys. Rev. B 51, 17235–38 (1995)Google Scholar
3. Roelofs, A., Schneller, T., Szot, K., and Waser, R., Appl. Phys. Lett. 81, 52315233 (2002)Google Scholar
4. Lee, J.K., Kim, T.-Y., Chung, I., and Desu, S.B., Appl. Phys. Lett. 75, 334336 (1999)Google Scholar
5. Eaglesham, D.J. and Cerullo, M., Phys. Rev.Lett. 64, 1943–46 (1990)Google Scholar
6. Medeiros-Ribeiro, G., Bratkovski, A.M., Kamins, T.I., Ohlberg, D.A.A., and Stanley-Williams, R., Science 279, 353355 (1998)Google Scholar
7. Osipov, A.V., Kukushkin, S.A., Schmitt, F., and Hess, P., Phys. Rev. B 64, 205421 (1–6) (2001)Google Scholar
8. Fujisawa, H., Morimoto, K., Shimizu, M., Niu, H., et al., Jpn. J. Appl. Phys. 39, 54465450 (2000)Google Scholar
9. Muralt, P., Hiboux, S., and Cantoni, M., Mat. Res. Symp. Proc. 748, U.28 (2002).Google Scholar
10. Ganpule, C.S., Stanishwevski, A., Su, Q., Aggarwal, S., et al., App. Phys. Lett. 75, 409 (1999)Google Scholar
11. Alexe, M., Harnagea, C., Hesse, D., and Gösele, U., App. Phys. Lett. 79, 242244 (2001)Google Scholar
12. Bühlmann, S., Dwir, B., Baborowski, J., and Muralt, P., Appl. Phys. Lett. 80, 31953197 (2002)Google Scholar
13. Kwok, C.K. and Desu, S.B., J. Mater. Res. 8, 339344 (1993)Google Scholar
14. Härtl, K.H. and Rau, H., Solid State Commum. 7, 4145 (1969)Google Scholar
15. Chen, K.C. and Mackenzie, J.D., Mat. Res. Symp. Proc. 180, 663668 (1990)Google Scholar
16. Kwok, C.K. and Desu, S.B., J. Mater. Res. 9, 17281733 (1994)Google Scholar
17. Muralt, P., Maeder, T., Scalese, S., Naumovic, D., et al., Le Vide, supplement 4547 (1996)Google Scholar
18. Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S., et al., J. Appl. Phys. 83, 38353841 (1998)Google Scholar
19. Hiboux, S., Muralt, P., and Maeder, T., J. Mat.Res. 14, 43074318 (1999)Google Scholar
20. Kighelman, Z., Damjanovic, D., Seifert, A., Sagalowicz, L., and Setter, N., Appl. Phys. Lett. 73, 2281–83 (1998)Google Scholar
21. Ledermann, N., Muralt, P., Baborowski, J., Gentil, S., et al., Sensors and Actuators A 105, 162170 (2003)Google Scholar
22. Baborowski, J., Muralt, P., Ledermann, N., and Hiboux, S., Vacuum 56, 5156 (2000)Google Scholar
23. Gruverman, A., Tokumoto, H., Prakash, A.S., Aggarwal, S., et al., Appl. Phys. Lett. 71, 3492–94 (1997)Google Scholar
24. Colla, E.L., Hong, S., Taylor, D.V., Tagantsev, A.K., and Setter, N., Appl. Phys. Lett. 72, 27632765 (1998)Google Scholar
25. Hiboux, S. and Muralt, P., J. Eur. Cer. Soc. 24, 15731577 (2004).Google Scholar
26. Lewis, B. and Anderson, J.C., Nucleation and Growth of Thin Films. 1978, London: Academic Press.Google Scholar
27. Kukushkin, S.A. and Osipov, A.V., J. Phys. Chem. Solids 56, 831838 (1995)Google Scholar
28. Reiss, H., J. Chem. Phys. 18, 840848 (1950)Google Scholar
29. Eisa, M.A., Abadir, M.F., and Gadalla, A.M., Trans. J. Br. Ceram. Soc. 79, 100104 (1980)Google Scholar