Hostname: page-component-68945f75b7-76l5x Total loading time: 0 Render date: 2024-08-05T21:22:29.604Z Has data issue: false hasContentIssue false

Slow Dynamics in Supercooled Water

Published online by Cambridge University Press:  10 February 2011

Francesco Sciortino
Affiliation:
Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Università di Roma La Sapienza, P.le Aldo Moro 2, 1–00185, Roma, Italy, fs@dectar.romal.infn.it
Piero Tartaglia
Affiliation:
Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Università di Roma La Sapienza, P.le Aldo Moro 2, 1–00185, Roma, Italy, fs@dectar.romal.infn.it
Paola Gallo
Affiliation:
Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139
Sow-Hsin Chen
Affiliation:
Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139
Get access

Abstract

We review some recent results on the self-dynamics in deep supercooled (simulated) water, obtained by analyzing very long Molecular Dynamics simulations. We discuss the possibility of interpreting the observed slowing down of the dynamics in terms of Mode Coupling Theory for supercooled liquids and, at the same time, of associating the experimentally observed anomalies of the transport coefficients in water on lowering the temperature to the formation of long living cages. The so-called critical Angeli temperature TA in supercooled water could be interpreted as kinetic glass transition temperature, relaxing the need of a thermodynamic singularity for the explanation of the dynamic anomalies of liquid water. In the end we discuss the possibility that TA acts as cross-over temperature from fragile to strong liquid behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Angell, C.A., in Water: A Comprehensive Treatise, Ed. Franks, F. (Plenum, New York, 1981), Ch. 1.Google Scholar
Angell, C.A., Ann. Rev. Phys. Chem. 34, 593 (1983).Google Scholar
[2] Sastry, S., Debenedetti, P. G., Sciortino, F. and Stanley, H.E., Phys. Rev. E 53 6144 (1996).Google Scholar
[3] Speedy, R.J., J. Chem. Phys. 86, 982 (1982).Google Scholar
Speedy, R.J. and Angeli, C.A., J. Chem. Phys. 65, 851 (1976).Google Scholar
[4] Poole, P.H., Sciortino, F., Essmann, U., Stanley, H. E., Nature 360, 324 (1992).Google Scholar
Sciortino, F., Poole, P.H., Essmann, U., Stanley, H. E., Phys. Rev. E 55 727 (1997).Google Scholar
[5] Lang, E. W. and Lüdemann, H. D., Angew. Chem. Int. Ed. Engl. 21, 315 (1982).Google Scholar
[6] Sokolov, A. P., Hurst, J. and Quitmann, D., Phys. Rev. B 51, 12865 (1995).Google Scholar
[7] Sciortino, F., Gallo, P., Tartaglia, P., Chen, S. H., Phys. Rev. E 54 6331 (1996).Google Scholar
[8] Paschek, D. and Geiger, A., preprint. (1996).Google Scholar
[9] Weingärtner, H., Haselmeier, R. and Holz, M., J. Phys. Chem. 100 1303 (1996).Google Scholar
[10] Gallo, P., Sciortino, F., Tartaglia, P., Chen, S. H., Phys. Rev. Lett. 76 2730 (1996).Google Scholar
[11] Leutheusser, E., Phys. Rev. A, 29, 2765 (1984),Google Scholar
Bengtzelius, U., Götze, W. and Sjölander, A., J. Phys. C 17 5915 (1984).Google Scholar
[12] Götze, W. and Sjögren, L., Rep. Prog. Phys. 55, 241 (1992).Google Scholar
[13] Götze, W. and Sjögren, A., Transport Theory and Statistical Physics 24, 801 (1995).Google Scholar
[14] Berendsen, H. J. C., Grigera, J. R. and Straatsma, T. P., J. Phys. Chem. 91, 6269 (1987).Google Scholar
[15] Sciortino, F. and Tartaglia, P., Phys. Rev. Lett, in press (1997).Google Scholar
[16] Sciortino, F. and Tartaglia, P., Prog. Theor. Phys. 121 (1997).Google Scholar
[17] Angeli, C. A. in Relaxations in Complex Systems, edited by Ngai, K. and Wright, G. B.. (National Technical Information Service, U.S. Dept. of Commerce: Springfield, VA, 1985) p. 1;Google Scholar
Angeli, C. A., J. Non-Cryst. Solids 13, 131.Google Scholar