Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-19T13:15:50.865Z Has data issue: false hasContentIssue false

Small Angle Neutron Scattering Investigation of Paraffin Solid Solutions Undergoing Microphase Separation

Published online by Cambridge University Press:  26 February 2011

J. E. Epperson
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
J. W. White
Affiliation:
Research School of Chemistry, Australian National University, GPO Box 4, Canberra, ACT, Australia
D. G. Wozniakt
Affiliation:
Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439, USA
Get access

Abstract

We show that small angle neutron scattering can sensitively detect microphase separation in solid solutions of the C30H62:C36D74 mixed paraffins. By ramping the sample temperature at a constant rate of about 0.5°C per minute, information complementary to that from differential heat capacity measurements is obtained from the total small angle scattering signal and its first temperature derivative. Because neutron wavelengths in the range from 0.8 < λ (Å) < 14.0 are used, scattering functions over an extended range (0.005 < q (Å−1) < 0.35) are obtained at the Argonne pulsed neutron source in a single experiment. This is important inasmuch as there is significant scattering in the lowest q region accessible due to the presence of cracks and/or voids, in addition to that from the microphase separation. The specific interfacial area as a function of temperature is reported from time slicing experiments on the pure C36D74 compound. Weak superlattice reflections are identifiable in the scattering profiles of the mixed paraffins due to the microphase separation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 ). Binder, K., J. Chem. Phys. 22, 6387 (1983).CrossRefGoogle Scholar
2 ). Bates, F. S., Dierker, S. B., and Wignall, G. D., Macromolecules 12, 1938 (1986).CrossRefGoogle Scholar
3 ). Kline, C. H., Chem. Ind. 483 (7 Aug. 1989).Google Scholar
4 ). Schwahn, D., Hahn, K., Streib, J., and Springer, T., submitted to J. Chem. Phys. (1990).Google Scholar
5 ). Stuhrmann, H. B., Methods of Experimental Physics 23, Part C, 367 (1987).CrossRefGoogle Scholar
6 ). Dorset, D. L., Macromolecules 12, 2965 (1986).CrossRefGoogle Scholar
7 ). Dorset, D. L., Macromolecules 21, 625 (1990).Google Scholar
8 ). White, J. W., Epperson, J. E., Dorset, D. L., and Snyder, R., Chem. Phys. Lett. 166, 560 (1990).CrossRefGoogle Scholar
9 ). Epperson, J. E., White, J. W., and Wozniak, D. G., submitted to J. Mat. Res. (1990).Google Scholar
10 ). White, J. W., Epperson, J. E., Dorset, D. L., and Snyder, R., to be submitted to Molecular Physics (1990).Google Scholar
11 ). Bates, F. S., Wignall, G. D., and Koehler, W. C., Phys. Rev. Lett. 55, 2425 (1985).CrossRefGoogle Scholar
12 ). Lapp, A., Picot, C., and Benoit, H., Marcomolecules 18, 2437 (1985).CrossRefGoogle Scholar
13 ). Epperson, J. E., Carpenter, J. M., Crawford, R. K., Thiyagarajan, P., and Klippert, T. E., to be submitted to J. Appl. Cryst. (1990).Google Scholar
14 ). Epperson, J. E., Carpenter, J. M., Thiyagarajan, P., and Heuser, B., Nucl. Instr. and Meth. in Physics Res. A289, 30 (1990).CrossRefGoogle Scholar
15 ). Small, D. M., Handbook of Lipid Research Vol, 4: The Physical Chemistry of Livids: From Alkanes to Phospholipids, p-197, Plenum Press, N.Y. and London (1986).Google Scholar
16 ). Porod, G., Z. für Kolloid 124, 83 (1951).CrossRefGoogle Scholar
17 ). Porod, G., in X-ray Small Angle Scattering, eds. Glatter, O. and Kratky, O., p-17, Academic Press, London (1982).Google Scholar