Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-06T09:26:32.113Z Has data issue: false hasContentIssue false

Small Angle Neutron Scattering Studies on Miscibility of Polystyrene and Tetramethyl-Bisphenol A-Polycarbonate Blends

Published online by Cambridge University Press:  26 February 2011

Hsinjin Yang
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
J. N. O'Reilly
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
Get access

Abstract

The miscible blend of polystyrene (PSH) and tetramethyl-bisphenol A-polycarbonate (TMPC) has been previously studied by differential scanning calorimetry (DSC), viscoelasticity, and microscopy. In this study, small-angle neutron scattering (SANS) has been applied to obtain the quantitative interaction parameter (X) of this blend at room temperature. Deuterated polystyrene (PSD) was used for the scattering contrast in the study. The PSD/TMPC blends show a single Tg over the whole range of composition from the DSC measurements, whicg is the same as the Tg of PSH/TMPC blend.

The interaction parameter was calculated from the de Gennes scattering intensity function of miscible polymer blends, which is based on the random phase approximation. As expected for a miscible system, all X values are negative over the range of composition. It is also found that the X is composition-dependent. Furthermore, the correlation length of the concentration fluctuation is approximately twice the segment length 21–32 Å of the component polymer (PSD = 6.7 Å and TMPC = 18.3 Å), implying that the mixing of this blend is effectively at segmental level.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Polymer Blends, Vol. I and II, edited by Paul, D.R. and Newman, S., (Academic Press, New York, 1978).Google Scholar
2. Olabishi, O., Robeson, L.M., Shaw, M.T., Polymer-Polymer Miscibility, (Academic Press, New York, 1979).Google Scholar
3. Polymer Compatibility and Incompatibility, edited by Solc, K., (Harwood Academic Publisher, New York, 1982).Google Scholar
4. Kirste, R.G., Kruse, W.A., Ibel, K., Polymer 16, 20 (1975).Google Scholar
5. Schmitt, B.J., Kirste, R.G., Jelenic, J., Makromol. Chem. 181, 1655 (1980).Google Scholar
6. Walsh, D.J., Higgins, J.S., Doube, C.P., McKeown, J.G., Polymer 22, 168 (1981).Google Scholar
7. Wignall, G.D., Child, H.R., Li-Aravena, F., Polymer 21, 131 (1980).Google Scholar
8. Ballard, D.G.H., Rayner, M.G., Schelten, J., Polymer 17, 640 (1976).CrossRefGoogle Scholar
9. Russell, T.P. and Stein, R.S., J. Polym. Sci., Polym. Phys. Ed. 20, 1593 1982).Google Scholar
10. Warner, M., Higgins, J.S., Carter, A.J., Macromolecules 16, 1931 (1983).Google Scholar
11. Jelenic, J., Kirste, R.G., Oberthur, R.C., Schmitt-Strecher, S., Schmitt, B.J., Makromol. Chem. 185, 129 (1984).CrossRefGoogle Scholar
12. Hadziioannou, G. and Stein, R.S., Macromolecules 17, 567 (1984).Google Scholar
13. Maconnachie, A., Kambour, R.P., Bopp, R.C., Polymer 25, 357 (1984).CrossRefGoogle Scholar
14. Murray, C.T., Gilmer, J.W., Stein, R.S., Macromolecules 15, 996 (1985).CrossRefGoogle Scholar
15. Shibayama, M., Yang, H., Stein, R.S., Han, C.C., Macromolecules 18, 2179 (1985).Google Scholar
16. Bates, F.S., Dierker, S.B., Wignall, G.D., Macromolecules 19, 1938 (1986).CrossRefGoogle Scholar
17. de Gennes, P.-G., Scaling Concepts in Polymer Physics, (Cornell Univ. Press, Ithaca, New York, 1979), Chapter IV.Google Scholar
18. Hadziioannou, G., Gilmer, J., Stein, R., Polym. Bull. 9, 563 (1983); R.S. Stein and G. Hadziioannou, Macromolecules 17, 1059 (1984).CrossRefGoogle Scholar
19. Benoit, H. and Benmouna, M., Macromolecules 17, 535 (1984).CrossRefGoogle Scholar
20. Casper, R. and Morbitzer, L., Die Ang. Makromol. Chem. 5, 1 (1977).Google Scholar
21. Illers, K.-H., Heckmann, W., Hambrecht, J., Colloid & Polym. Sci. 262, 557 (1984).CrossRefGoogle Scholar
22. Wisniewsky, C., Martin, G., Monge, P., Eur. Polym. J. 20, 691 (1984).CrossRefGoogle Scholar
23. Einstein, A., Ann. Phys. 33, 1275 (1910).Google Scholar
24. Flory, P.J., J. Chem. Phys. 10, 51 (1942).CrossRefGoogle Scholar
25. Huggins, M.L., Ann. N.Y. Acad. Sci. 43, 1 (1942).Google Scholar
26. Ornstein, L.S. and Zernike, F., Proc. Acad. Sci., Amsterdam 17, 793 (1914).Google Scholar
27. Serini, V., Freitag, D., Vernaleken, H., Die Ang. Makromol. Chem. 55, 175 (1976).Google Scholar
28. Gordon, M. and Taylor, J.S., J. Appl. Chem. 2, 493 (1952).CrossRefGoogle Scholar
29. Couchman, P.B., Phys. Lett. 70A, 155 (1979).Google Scholar
30. Gawrisch, W., Brereton, M.G., Fischer, E.W., Polym. Bull., 4 687 (1981).Google Scholar
31. Flory, P.J., Principle of Polymer Chemistry, (Cornell Univ. Press, Ithaca, New York, 1953).Google Scholar
32. Koningsveld, R., Kleintjens, L.A., J. Polym. Sci., Polym. Symp. 61, 211 (1977).CrossRefGoogle Scholar