Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T19:07:07.414Z Has data issue: false hasContentIssue false

Solar Spectrum Splitting Parallel Junction High Efficiency Concentrating Photovoltaics

Published online by Cambridge University Press:  12 April 2012

Lirong Z. Broderick
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
Marco Stefancich
Affiliation:
Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates
Dario Roncati
Affiliation:
Istituto dei Materiali per l’ Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A – 43124, Parma, Italy
Brian R. Albert
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
Xing Sheng
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
Lionel C. Kimerling
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
Jurgen Michel
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
Get access

Abstract

A compact, single element concentrator comprising a near linear array of prisms has been designed to simultaneously split and concentrate the solar spectrum. Laterally aligned solar cells with different bandgaps are devised to be fabricated on a common Si substrate, with each cell absorbing a different spectral band optimized for highest overall power conversion efficiency. Epitaxial Ge on Si is used as a low cost virtual substrate for III-V materials growth. Assuming no optical loss for the prism concentrator, no shadowing and perfect carrier collection for the solar cells, simulations show that 39% efficiency can be achieved for a parallel four-junction (4PJ) InGaP-GaAs-Si-Ge cell under 200X concentration, and higher efficiency is possible with more junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Green, Martin A. and Ho-Baillie, Anita, Prog. Photovolt: Res. Appl. 18, 42 (2010).Google Scholar
[2] Zhao, Yuan, Sheng, Ming-Yu, Zhou, Wei-Xi, Shen, Yan, Hu, E. T., Chen, J. B., Xu, Ming, Zheng, Yu- Xiang, Lee, Young-Pak, Lynch, David W., and Chen, Liang-Yao, Proc. of SPIE, 8065, 806507 (2011).Google Scholar
[3] Barnett, Allen, Kirkpatrick, Douglas, Honsberg, Christiana, Moore, Duncan, Wanlass, Mark, et al. ., Prog. Photovolt: Res. Appl. 17, 75 (2009).Google Scholar
[4] Stefancich, M., Zayan, A., Rampino, S., Roncati, D., Kimerling, L. C., Michel, J., Chiesa, M., “Single element spectral splitting solar concentrator for multiple cells CPV system”, submitted to Optics Express, 2012.Google Scholar
[5] Currie, M.T., , S.B.S., Langdo, T.A., Leitz, C.W., Fitzgerald, E.A., Applied physics letters, 72, 1718 (1998).Google Scholar
[6] Luan, H.-C., , D.R.L., Lee, K. K., Chen, K. M., Sandland, J. G., Wada, K. and Kimerling, L. C., Applied physics letters, 75, 2909 (1999).Google Scholar
[7] Ringel, S. A., Carlin, J. A., Andre, C. L., Hudait, M. K., Gonzalez, M., Wilt, D. M., Clark, E. B., Jenkins, P., Scheiman, D., Allerman, A., Fitzgerald, E. A. and Leitz, C. W., Prog. Photovolt: Res. Appl. 10, 417 (2002).Google Scholar