Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T19:22:16.963Z Has data issue: false hasContentIssue false

Sol-gel Nanohybrid Materials Incorporating Functional Thiacalixarenes for Non-Linear Optical Applications

Published online by Cambridge University Press:  15 February 2011

C. Desroches
Affiliation:
Laboratoire des Multimatériaux et Interfaces, UMR 5615 CNRS, Université Claude Bernard-Lyon 1, 69622 Villeurbanne, France. E-mail:Stephane.Parola@univ-lyon1.fr
S. Parola
Affiliation:
Laboratoire des Multimatériaux et Interfaces, UMR 5615 CNRS, Université Claude Bernard-Lyon 1, 69622 Villeurbanne, France. E-mail:Stephane.Parola@univ-lyon1.fr
D. Cornu
Affiliation:
Laboratoire des Multimatériaux et Interfaces, UMR 5615 CNRS, Université Claude Bernard-Lyon 1, 69622 Villeurbanne, France. E-mail:Stephane.Parola@univ-lyon1.fr
P. Miele
Affiliation:
Laboratoire des Multimatériaux et Interfaces, UMR 5615 CNRS, Université Claude Bernard-Lyon 1, 69622 Villeurbanne, France. E-mail:Stephane.Parola@univ-lyon1.fr
P. L. Baldeck
Affiliation:
Laboratoire de Spectrométrie Physique, UMR 5588 CNRS, Université Joseph Fourier, Saint Martin d'Hères, France
C. Lopes
Affiliation:
Swedish Defence Research Agency, Division of Sensor Technology, 581 11, Linköping, Sweden
Get access

Abstract

Macrocyclic thiacalixarenes have interesting non-linear optical properties. Thiacalixarenes bearing phenylazo, imino, ethynylic groups or platinum derived acetylides on the upper rims were designed, prepared and fully characterised. They showed interesting properties for optical limiting. Moreover these macrocycles are highly soluble in organic solvents and can easily be embedded in inorganic matrix using the sol-gel routes.

Thiacalixarene based class I and II solid-state materials were prepared and their optical limiting behaviour was investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Spangler, C.W., J. Mater. Chem., 1999, 9, 2013.Google Scholar
2 Said, A.A., Wamsley, C., Hagan, D.J., Stryland, E.W. Van, Reinhardt, B.A., Roderer, P. and Dillard, A.G., Chem. Phys. Lett., 1994, 228, 646.Google Scholar
3 Hollins, R. C., Nonlinear Optics, 2001, 27, 1.Google Scholar
4 Bhawalkar, J. D., He, G.S. and Prasad, P.N., Rep. Prog. Phys., 1996, 59, 1041.Google Scholar
5 Swalen, J. D. and Kajzar, F., Nonlinear Optics, 2001, 27, 13.Google Scholar
6 Desroches, C., Parola, S., Vocanson, F., Lamartine, R., Perrin, M., Bouix, J., New J. Chem., 2002, 26, 5. 651.Google Scholar
7 Kumagai, H., Hasegawa, M., Miyanari, S., Sugawa, Y., Sato, Y., Hori, T., Ueda, S., Kamiyama, H., Miyano, S., Tetrahedron Lett., 1997, 38, 3971.Google Scholar
8 Mislin, G., Graf, E., Hosseini, M.W., Cian, A. De, Fischer, J., J. Chem. Soc., Chem. Commun., 1998, 1345.Google Scholar
9 Parola, S., Desroches, C., Vocanson, F., Lamartine, R., Bouix, J., Fr. Pat., WO 2 821 357, 2002.Google Scholar
10 Desroches, C., Parola, S., Vocanson, F., Ehlinger, N., Miele, P., Lamartine, R., Bouix, J., Anders Eriksson, Mikael Lindgren, Lopes, C., J. Mater. Chem., 2001, 11, 3014.Google Scholar
11 Desroches, C., Perrin, M., Bavoux, C., Vocanson, F., Lamartine, R., Miele, P., Parola, S., J. Incl. Phenom, 2003, in the press.Google Scholar
12 Desroches, C., Lopes, C., Kessler, V., Parola, S., Dalton Trans, 2003, in the press.Google Scholar
13 Riehl, D., Chaput, F., Lévy, Y., Boilot, J.-P., Kajzar, F. and Chollet, P.-A., Chem. Phys. Lett., 1995, 245, 36.Google Scholar
14 Judeinstein, P. and Sanchez, C., J. Mater. Chem., 1996, 6(4), 511.Google Scholar
15 Sanchez, C., Soler-Illia, G.J. de A.A., Ribot, F., Lalot, T., Mayer, C.R. and Cabuil, V., Chem. Mater, 2001, 13, 3061.Google Scholar