Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-06T20:56:23.887Z Has data issue: false hasContentIssue false

Solid Phase Processes for Semiconductor-On-Insulator

Published online by Cambridge University Press:  25 February 2011

C.V. Thompson*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA. 02139
Get access

Abstract

A wide variety of techniques for producing device-quality semiconductor films on insulating substrates (SOI) are being studied. Processes which provide low defect density films at low temperatures and which do not require seeding from a single crystal substrate would offer the greatest flexibility. While such processes do not currently exist, approaches based on crystallization of amorphous silicon or grain growth in polycrystalline silicon are being investigated. Development of either approach requires careful control of film properties and improved understanding of the fundamental materials processes involved. Theory and experiments on surface-energy-driven secondary grain growth (SEDS6G) are briefly reviewed. Controlled SEDS66 may provide a low temperature means of obtaining low defect density films of a variety of materials on a common substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lam, H.W, Tasch, A.F Jr., and Pinizzotto, R.P, Chap. 1 in “VLSI Electronics Microstrueture Science”, Vol. 4, Ed., Einspruch, Norman G., Academic Press, New York (1982).Google Scholar
2. Antoniadis, D.A, Mat. Res. Soc. Symp., 23, 587 (1984).Google Scholar
3. ”Materials Research Society Symposia Proceedings, Vol. 4, (1982), Vol. 13, (1983), and Vol. 23, (1984).Google Scholar
4. Geis, M.W, Smith, H.I, B.-Y. Tsaur, J.Fan, C.C, Silversmith, D.J and Mountain, R.W, J. Electrochem. Soc. 129, 2812 (1982).Google Scholar
5. Fan, J.C.C., Geis, M.W and Tsaur, B.-Y., Appl. Phys. Lett. 38 365 (1981).Google Scholar
6. Atwater, H.A, Smith, H.I and Geis, M.W, Appl. Phys. Lett. 41, 747 (1982).Google Scholar
7. Atwater, H.A, Thompson, C.V, Smith, H.I and Geis, M.W Appl. Phys. Lett. 43, 1126 (1983).Google Scholar
8. Biegelsen, D.K, Johnson, N.M, Bartelink, D.J and Moyer, M.D, Appl. Phys. Lett. 38, 150 (1981).Google Scholar
9. Cellar, G.K, Robinson, McD. and Lischner, D.J, Appl. Phys. Lett. 42, 99 (1983).Google Scholar
10. Ohmura, Y., Matsushita, Y. and Kashiwagi, M., Jpn. J. Appl. Phys. 21 L152154 (1982).Google Scholar
11. Kunii, Y., Tabe, M. and Kajiyama, K., Jpn. J. Appl. Phys. 22, Supplement 22-1, 605 (1983).Google Scholar
12. Roth, J.A, Olson, G.L and Hess, L.D, Mat. Res. Soc. Symp. Proc. 23, 431 (1984).Google Scholar
13. Tabe, M. and Kunii, Y., this proceedings.Google Scholar
14. Kunii, Y., Tabe, M. and Kajiyama, K., J. Appl. Phys. 54, 2847 (1983).Google Scholar
15. Izumi, K., Doken, M. and Ariyoshi, H., Electronics Letts. 14 593 (1978).Google Scholar
16. Izumi, K., Omura, Y. and Nakashima, S., Mat. Res. Soc. Symp. Proc, 23, 443 (1984).Google Scholar
17. Reif, R. and Knott, J.E, Electronics Letts. 17, 586 (1981).Google Scholar
18. Kung, K.T-Y., Iverson, R.B and Reif, R., to be published in Materials Letters.Google Scholar
19. Spaepen, F. and Turnbull, D., Chap. 2 in “Laser Annealing of Semiconductors”, ed. Poate, J.M and Mayer, J.W, Academic Press, New York (1982).Google Scholar
20. Kennedy, E.F, Csepregi, L., Mayer, J.W and Sigmon, T.W, J. Appl. Phys. 48, 4241 (1977).Google Scholar
21. Csepregi, L., Kennedy, E.F, Gallagher, T.J, Mayer, J.W and Sigmon, T.W, J. Appl. Phys. 48, 4234 (1977).Google Scholar
22. Csepregi, L., Kennedy, E.F, Mayer, J.W and Sigmon, T.W, J. Appl. Phys. 49, 3906 (1978).Google Scholar
23. Yamamoto, H., Ishiwara, H., Furukawa, S., Tamura, M. and Tokuyama, T., Mat. Res. Soc. Symp. Proc. 25, 511 (1984).Google Scholar
24. Christian, J.W, “The Theory of Transformations in Metals and Alloys -Part I”, second edition, Pergamon Press, New York (1975).Google Scholar
25. Thompson, C.V and Smith, H.I, , VT (1983).Google Scholar
26. Thompson, C.V and Smith, H.I, Appl. Phys. Lett. 44, 603 (1984).Google Scholar
27. Yonehara, T., Thompson, C.V and Smith, H.I, Mat. Res. Soc. Symp. Proc. 23, 627 (1984).Google Scholar
28. Yonehara, T., Smith, H.I, Thompson, C.V and Palmer, J.E, Appl. Phys. Lett. 45, 631 (1984).Google Scholar
29. Kim, H.J and Thompson, C.V, to be published.Google Scholar
30. Thompson, C.V, submitted to J. Appl. Phys. Google Scholar
31. Turnbull, D., Trans AIME 191, 661 (1951).Google Scholar
32. Makris, J.S and Masters, B.J, J. Electrochem. Soc. 120 1253 (1973).Google Scholar
33. Smith, H.I, Thompson, C.V, Geis, M.W, Lemons, R.A and Bosch, M.A, J. Electrochem. Soc. 130, 2050 (1983).Google Scholar
34. Biegelsen, D.K, Fennell, L.E and Zesch, J.C, Appl. Phys. Lett. 45, 546 (1984).Google Scholar
35. Jacodine, R.J, J. Electrochem. Soc. 110, 524 (1963).Google Scholar
36. Szilagyi, A., Ph.D. Thesis, Dept. of Physics, Massachusetts Institute of Technology (1984).Google Scholar
37. Angelucci, R., Severi, M. and Solmi, S., Mat. Chem. and Phys. 9, 235 (1983).Google Scholar
38. Geis, M.W, Flanders, D.C and Smith, H.I, Appl. Phys. Lett. 35, 71 (1979).Google Scholar
39. Cline, H.E, J. Appl. Phys. 55, 2910 (1984).Google Scholar
40. Cline, H.E, J. Appl. Phys. 55, 4392 (1984).Google Scholar
41. Walter, J.L and Dunn, C.G, Trans. AIME 227, 185 (1963).Google Scholar
42. Cahn, R.W, Chap. 19 in “Physical Metallurgy”, ed., Cahn, R.W, North-Holland, Amsterdam (1970).Google Scholar