Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T09:25:03.570Z Has data issue: false hasContentIssue false

Solid Silicon at the Melting Temperature is Crystalline

Published online by Cambridge University Press:  22 February 2011

D. K. Biegelsen
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
R. J. Nemanich
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
L. E. Fennell
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
R. A. Street
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

Recently it has been proposed that solid silicon at the melting temperature is amorphous. There is no known case of a solid for which an amorphous structure is the equilibrium state. Silicon thin films on insulating substrates, when heated radiantly, melt inhomogeneously and provide an accessible high temperature system for a study of a solid coexisting with its melt. Using the intensity, energy distribution and polarization of Raman scattering from silicon lamellae, we have proved that the equilibrium phase is in fact crystalline. Furthermore, we give strong evidence that the solid regions have {100} texture at Tm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example, Proc. Mat. Res. Soc. 13, (1983).Google Scholar
2.Van Vechten, J. A., Bull. Amer. Phys. Soc. 27, 365 (1982).Google Scholar
3.Bosch, M. A. and Lemons, R. A., Phys. Rev. Lett. 47, 1151 (1981).Google Scholar
4.Hawkins, W. G. and Biegelsen, D. K., Appl. Phys. Lett. 42, 358 (1983).Google Scholar
5.Tsu, R. and Hernandez, J. G., Appl. Phys. Lett. 41, 1016 (1982);Google Scholar
5a.Hart, T. R., Aggarwal, R. L. and Lax, B., Phys. Rev. B1, 638 (1970).Google Scholar
6.Smith, J. E. Jr., Brodsky, M. H., Crowder, B. L., Nathan, M. I., Pinczuk, A., Phys. Rev. Lett. 26, 642 (1971).Google Scholar
7.Possin, G. E., Parks, H. G., Chiang, S. W. and Liu, Y. S., Proc. Mat. Res. Soc. 13, 549 (1983).Google Scholar
8.Woodruff, D. P., The Solid Liquid Interface (Cambridge Solid State Science Series (1973) P. 5859.Google Scholar
9.Herring, C., Phys. Rev. 82, 87 (1951).Google Scholar
10.Nemanich, R. J., Biegelsen, D. K. and Hawkins, W. G., Proc. Mat. Res. Soc. 13, 211 (1983).Google Scholar
11.Gels, M. W., Smith, H. I., Tsaur, B.-Y., Fan, J. C. C., Silversmith, D. J. and Mountain, R. W., J. Electrochem. Soc. 129, 2812 (1982).Google Scholar
12.Biegelsen, D. K., Johnson, N. M., Hawkins, W. G., Fennell, L. E. and Moyer, M. D., Proc. Mat. Res. Soc. 13, 537 (1983).Google Scholar