Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-30T13:27:47.983Z Has data issue: false hasContentIssue false

Solidly Mounted Bulk Acoustic Wave Filters

Published online by Cambridge University Press:  01 February 2011

H. P. Loebl
Affiliation:
Philips Research Laboratories, Weisshausstr.2, D-52066 Aachen, Germany
C. Metzmacher
Affiliation:
Philips Research Laboratories, Weisshausstr.2, D-52066 Aachen, Germany
R. F. Milsom
Affiliation:
Philips Research Laboratories, Cross Oak Lane; Redhill; Surrey, RH1 5HA, UK
A. Tuinhout
Affiliation:
Philips Semiconductors, Mobile Communications; SI, Gerstweg2, NL-6534 AE Nijmegen, The Netherlands
P. Lok
Affiliation:
Philips Semiconductors, Mobile Communications; SI, Gerstweg2, NL-6534 AE Nijmegen, The Netherlands
F. van Straten
Affiliation:
Philips Semiconductors, Mobile Communications; SI, Gerstweg2, NL-6534 AE Nijmegen, The Netherlands
Get access

Abstract

Selective RF filters based on solidly mounted thin film bulk acoustic wave resonator filters (SMR filters) are of great interest for mobile and wireless applications in the GHz frequency range. They are small in size, robust and can be integrated on silicon. The SMR configuration comprises a textured piezoelectric layer of AlN or ZnO sandwiched between two electrodes, and an acoustic reflector, which confines the acoustic energy in the resonator region. The bulk acoustic wave (BAW) resonators are exited in the thickness extensional mode. In these paper examples of BAW resonators and filters for the frequency range between 1 and 8 GHz are shown. It will become clear that precise control of AlN film growth is very important. Modelling the resonator performance using a 1-dimensional electro acoustical model allows the extraction of important thin film parameters and thus simulation of the filter performance. Limitations of the 1-D model are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lakin, K.M., Kline, G.R., McCarron, K.T.,, 41, 2139 (1993).Google Scholar
2. Lakin, K.M., Belsick, J., McDonald, J.F., and McCarron, K.T., 2001 IEEE Ultrasonics Symposium Atlanta, p. 833, 2001.Google Scholar
3. Ruby, R.C., Bradley (SM), P., Oshmyansky, Y., Chien, A., 2001 IEEE Ultrasonics Symposium Atlanta, p. 833, 2001.Google Scholar
4. Lakin, K.M., Kline, G.R., McCarron, K.T.,, IEEE Transactions on Microwave Theory a. Techniques, 43, 2933 (1995).Google Scholar
5. Larson, J.D. III, Ruby, R., Bradley, P., Oshmyansky, Y., 1999 IEEE Ultrasonics Symposium Lake Tahoe, p. 887, 1999.Google Scholar
6. Lakin, K.M:, McCarron, K.T., Belsick, J., Rose, R., 2000 IEEE Ultrasonics Symposium, Puerto Rico, p. 851, 2000.Google Scholar
7. Loebl, H.P., Metzmacher, C., Peligrad, D.N., Mauczok, R., Klee, M., Brand, W., Milsom, R.F., Lok, P., van Straten, F., Tuinhout, A., Lobeek, J.W., 2002 IEEE Ultrasonics Symposium Munich, proceedings, p. 897, 2002.Google Scholar
8. Lakin, K.M., 2002 IEEE Ultrasonics Symposium Munich, proceedings, p. 879, 2002.Google Scholar
9. Kaitila, J., Yililammi, M., Molaris, J., Ellä, J., Makkonen, T., 2001 IEEE Utrasonics Symposium Atlanta, p. 803, 2001.Google Scholar
10. Bradley, P. D., SM, , Ruby, R., Barfknecht, A., Geefay, F., Han, C., Gan, G., Oshmyansky, Y., 2002 IEEE Ultrasonics Symposium Munich, proceedings, p. 907, 2002.Google Scholar
11. Dubois, M.A., Muralt, P., Plesky, V., 1999 IEEE Ultrasonics Symposium, p. 907, 1999.Google Scholar
12. Dubois, M.A., Muralt, P.,, J. Appl. Phys. 89, 6389 (2001).Google Scholar
13. Dubois, M.A., Muralt, P., Appl. Phys. Lett. 74, 3032 (1999).Google Scholar
14. Pinkett, S.L., Hunt, W.D., Barber, B.P., Gammel, P.L., 2001 IEEE Utrasonics Symposium Atlanta, p. 823, 2001.Google Scholar
15. Löbl, H.P., Klee, M., Milsom, R., Dekker, R., Metzmacher, C., Brand, W., Lok, P.,, Journal of the European Ceramic Society, 21, 2633, (2001).Google Scholar
16. Löbl, H.P., Klee, M., Wunnicke, O., Kiewitt, R., Dekker, R., Pelt, E.v., 1999 IEEE Ultrasonics Symposium Lake Tahoe, p. 1031, 1999.Google Scholar
17. Lobl, H.P., Klee, M., Metzmacher, C., Brand, W., Milsom, R., Lok, P., van Straten, F., 2001 IEEE Ultrasonics Symposium Atlanta, p. 807, 2001.Google Scholar
18. Su, Q.X., Kirby, P., Komoro, E., Imura, M., Zang, Q., Whatmore, R.W., IEEE Trans. MMT–49, 749 (2001).Google Scholar
19. Lakin, K.M., Belsick, J., McDonald, J.F., Mc Carron, K.T:,, 2001 IEEE Utrasonics Symposium Atlanta, p. 827, 2001.Google Scholar
20. Löbl, H.P., Klee, M., Metzmacher, C., Brand, W., Milsom, R., Lok, P., Proceedings (SSMM) of the Asia Pacific Microwave Conference APMC 2001, Taipei, p. 37–42, 2001 and Materials Science a. Engineering 9532, 1 (2002).Google Scholar
21. Rodriguez-Navarro, A., Otano-Rivera, W., Garcia-Ruiz, J.M., Messier, R. & Pilione, L.J., J. Mater. Res., 12, 18501855 (1997).Google Scholar
22. Löbl, H-P., Metzmacher, C., Milsom, R.F., Mauczok, R., Brand, W., Lok, P., van Straten, F., Tuinhout, A., IEEE Ultrasonics Symposium, Honolulu, paper 4B6, 2003.Google Scholar
23. Nowotny, H., Benes, E., J. Acoust. Soc. Am., 82, 513 (1987).Google Scholar
24. Milsom, R.F., Löbl, H.P., Peligrad, D.N., Lobeek, J.W., Tuinhout, A., ten Dolle, H.J., 2002 IEEE Ultrasonics Symposium Munich, proceedings, p. 963, 2002.Google Scholar
25. Milsom, R.F., Loebl, H.P., Metzmacher, C., Lok, P., Tuinhout, A., van Straten, F., 2003 IEEE Ultrasonics Symposium Honululu, Hawaii, paper P2N3, 2003.Google Scholar