Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-25T19:02:19.809Z Has data issue: false hasContentIssue false

Solid-Phase Epitaxy - Role of Point Defects in Amorphous Solids

Published online by Cambridge University Press:  21 February 2011

T.K. Chaki*
Affiliation:
State University of New York, Department of Mechanical Engineering and Center for Electronic & Electro-optic Materials, Buffalo, NY 14260
Get access

Abstract

A model of solid-phase epitaxial growth (SPEG), explaining enhancing effects of ion-irradiation and dopants, is presented. The crystallization is by the adjustment of atomic positions in the amorphous side of the crystalline/amorphous (c-a) interface due to self-diffusion in the amorphous solid, assisted by a freeenergy decrease associated with the transformation from the amorphous (a) to crystalline (c) phase. Irradiation and electrically active dopants increase the selfdiffusivity of a-phase by generating point defects in the amorphous layer and thus enhance crystallization. An expression for the velocity of epitaxial growth is derived. The low activation energy of ion-induced SPEG is due to recombination of point defects in the a-phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Csepregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
2. Csepregi, L., Kfillen, R. P., Mayer, J. W., and Sigmon, T. W., Solid State Commun. 21, 1019 (1977).Google Scholar
3. Williams, J. S. and Austin, M. W., Appl. Phys. Lett. 36, 994 (1980).Google Scholar
4. Gamo, K., Yagita, H., Takai, M., Namba, S., and Takigawa, M., Radiat. Effects 47, 45 (1980).CrossRefGoogle Scholar
5. Nakata, J. and Kajiyama, K., Appl. Phys. Lett. 40, 686 (1982).Google Scholar
6. Linnros, J., Holmén, G., and Svensson, B., Phys. Rev. B, 32, 2770 (1985).CrossRefGoogle Scholar
7. Williams, J. S., Elliman, R. G., Brown, W. L., and Seidel, T. E., Phys. Rev. Lett. 55, 1482 (1985).CrossRefGoogle Scholar
8. Holmén, G., Peterström, S., and Burén, A., and Bogh, E., Radiat. Effects 24, 45 (1975).Google Scholar
9. Johnson, S. T., Williams, J. S., Nygren, E., and Elliman, R. G., J. Appl. Phys. 64, 6567 (1988).Google Scholar
10. Kobayashi, N., Kobayashi, H., and Kumashiro, Y., Nucl. Instrum. Methods Phys. Res. B40/41, 550 (1989).CrossRefGoogle Scholar
11. Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4234 (1977).Google Scholar
12. Suni, I., Göltz, G., Grimaldy, M. G., Nicolet, M.-A., and Lau, S. S., Appl. Phys. Lett. 40, 269 (1982).Google Scholar
13. Suni, I., Göltz, G., Nicolet, M.-A., and Lau, S. S., Thin Solid Films 93, 171 (1982).CrossRefGoogle Scholar
14. Park, W. W., Becker, M. F., and Walser, R. M., Appl. Phys. Lett. 52, 1517 (1988).CrossRefGoogle Scholar
15. Licoppe, C. and Nissim, Y. I., J. Appl. Phys. 59, 432 (1986).CrossRefGoogle Scholar
16. Spaepen, F. and Turnbull, D., in Laser-Solid Interactions and Laser Processing, edited by Ferris, S. D., Leamy, H. J., and Poate, J. M. (American Institute of Physics, New York, 1979), p. 73.Google Scholar
17. Narayan, J., J. Appl. Phys. 53, 8607 (1982).Google Scholar
18. Chaki, T. K., Phil. Mag. Lett. 59, 223 (1989).CrossRefGoogle Scholar
19. Jackson, K. A., J. Mater. Res. 3, 1218 (1988).Google Scholar
20. Carter, G. and Nobes, M. J., J. Mater. Res. 6, 2103 (1991).Google Scholar
21. Campisano, S. U., Appl. Phys. A, 29, 147 (1982).Google Scholar
22. Turnbull, D., Trans. Am. Inst. Min. Engrs. 191, 661 (1951).Google Scholar
23. Chaki, T. K., Phil. Mag. A, 62, 465 (1990).Google Scholar
24. Gupta, D., Tu, K. N., and Asai, K. W., Phys. Rev. Lett. 35, 796 (1975).Google Scholar
25. Ahmadzadeh, M. and Cantor, B., J. Non-Crystalline Solids 43, 189 (1981).CrossRefGoogle Scholar
26. Tu, K. N. and Chou, T. C., Phys. Rev. Lett. 61, 1863 (1988).Google Scholar
27. Hahn, H. and Averback, R. S., Phys. Rev. B, 37, 6533 (1988).Google Scholar
28. Chaki, T. K. and Li, J. C. M., Phil. Mag. B, 51, 557 (1985).Google Scholar
29. Laakkonen, J. and Nieminen, R. M., J. Phys. C, 21, 3663 (1988).Google Scholar
30. Bottiger, J., Pampus, K., and Torp, B., Europhys. Lett. 4, 915 (1987).Google Scholar
31. Ding, F., Averback, R. S., and Hahn, H., J. Appl. Phys. 64, 1785 (1988).Google Scholar
32. Priolo, F., Poate, J. M., Jacobson, D. C., Linnros, J., Batstone, J. L., and Campisano, S. U., Appl. Phys. Lett. 52, 1213 (1988).Google Scholar
33. Park, B., Spaepen, F., Poate, J. M., Priolo, F., Jacobson, D. C., Pai, C. S., White, A. E., and Short, K. T., Mater. Res. Soc. Symp. Proc. 103, 173 (1988).Google Scholar
34. Sigmund, P., Appl. Phys. Lett. 14, 114 (1969).Google Scholar
35. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983).Google Scholar
36. Park, B., Spaepen, F., Poate, J. M., and Jacobson, D. C., Mater. Res. Soc. Symp. Proc. 163, 621 (1990).Google Scholar
37. Poate, J. M., Private Communication, October 19, 1993.Google Scholar
38. Park, B., Ph. D. Thesis, Harvard University, 1989, p. 17.Google Scholar
39. Vook, F. L. and Stein, H. J., Radiat. Effects 2, 23 (1969).Google Scholar
40. Brown, W. L., Elliman, R. G., Knoell, R. V., Leiberich, A., Linnros, J., Maher, D. M., and Williams, J. S., in Microscopy of Semiconducting Materials, edited by Cullis, A. G. and Augustus, P. D. (Institute of Physics, London, 1987), p. 61.Google Scholar
41. Frank, W., Gosele, U., Mehrer, H., and Seeger, A., in Diffusion in Crystalline Solids, edited by Murch, G. E. and Nowick, A. S. (Academic Press, New York, 1984), p. 64.Google Scholar