Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T09:36:32.788Z Has data issue: false hasContentIssue false

Solution Processable n-Type Perylene Diimide Copolymers for Organic Photovoltaics

Published online by Cambridge University Press:  02 February 2011

Ziqi Liang
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401ziqi.liang@nrel.gov; brian.gregg@nrel.gov
Russell A. Cormier
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401ziqi.liang@nrel.gov; brian.gregg@nrel.gov
Alexandre M. Nardes
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401ziqi.liang@nrel.gov; brian.gregg@nrel.gov
Brian A. Gregg
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401ziqi.liang@nrel.gov; brian.gregg@nrel.gov
Get access

Abstract

Perylene diimides are known as promising n-type semiconductor building blocks. Here we report the synthesis and characterization of a set of three soluble poly(perylene diimide)s and their preliminary characterization in organic photovoltaic cells. These polymers are made through the polycondensation of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) with a variety of poly(ethylene glycol) (PEG)- or poly(propylene glycol) (PPG)-based diamine comonomers. The flexible spacer offers increased solubility in organic solvents and allows the perylene core to assume a conformation that promotes favorable cofacial π–π interactions. Mixtures of these polymers with the hole-transporting polymer, poly(3-hexylthiophene) (P3HT) result in significant fluorescence quenching. However, the phase separation occurs on a scale too large for a bulk heterojunction solar cell. The PPGylated poly(perylene diimide) shows an unusually low free electron concentration (~1.0 × 1012 cm-3) and therefore makes an excellent model system for future doping studies. These new polymers may have promise as stable electron-conductive layers with large light-absorptivities in solution-processable applications of organic electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Struijk, C. W., Sieval, A. B., Dakhorst, J. E. J., van Dijk, M., Kimkes, P., Koehorst, R. B. M., Donker, H., Schaafsma, T. J., Picken, S. J., van de Craats, A. M., Warman, J. M., Zuilhof, H. and Sudhölter, E. J. R., J. Am. Chem. Soc. 122, 1105711066 (2000).10.1021/ja000991gGoogle Scholar
2. Cormier, R. A. and Gregg, B. A., Chem. Mater. 10, 13091319 (1998).10.1021/cm970695bGoogle Scholar
3. Crone, B., Dodabalapur, A., Lin, Y.-Y., Flas, R. W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H. E. and Li, W., Nature 403 (2000) 521523.10.1038/35000530Google Scholar
4. Tang, C. W., Appl. Phys. Lett. 48, 183185 (1986).10.1063/1.96937Google Scholar
5. Breeze, A. J., Salomon, A., Ginley, D. S., Gregg, B. A., Tillmann, H. and Hörhold, H.-H., Appl. Phys. Lett. 81, 30853087 (2002).10.1063/1.1515362Google Scholar
6. Peumans, P., Uchida, S. and Forrest, S. R., Nature 425, 158162 (2003).10.1038/nature01949Google Scholar
7. Liu, A., Zhao, S., Rim, S.-B., Wu, J., Könemann, M., Erk, P. and Peumans, P., Adv. Mater. 20, 10651070 (2008).10.1002/adma.200702554Google Scholar
8. Dittmer, J. J., Marseglia, E. A. and Friend, R. H., Adv. Mater. 12, 12701274 (2000).10.1002/1521-4095(200009)12:17<1270::AID-ADMA1270>3.0.CO;2-83.0.CO;2-8>Google Scholar
9. Schmidt-Mende, L., Fechtenkötter, A., Müllen, K., Moons, E., Friend, R. H. and MacKenzie, J. D., Science 293, 11191122 (2001).10.1126/science.293.5532.1119Google Scholar
10. Li, J., Dierschke, F., Wu, J., Grimsdale, A. C. and Müllen, K., J. Mater. Chem. 16, 96100 (2006).10.1039/B512373AGoogle Scholar
11. Finlayson, C. E., Friend, R. H., Otten, M. B. J., Schwartz, E., Cornelissen, J. J. L. M., Nolte, R. J. M., Rowan, A. E., Samorì, P., Palermo, V., Liscio, A., Peneva, K., Müllen, K., Trapani, S. and Beljonne, D., Adv. Funct. Mater. 18, 39473955 (2008).10.1002/adfm.200800943Google Scholar
12. Lindner, S. M., Hüttner, S., Chiche, A., Thelakkat, M. and Krausch, G., Angew. Chem. Int. Ed. 45, 33643368 (2006).10.1002/anie.200503958Google Scholar
13. You, C.-C., Saha-Möller, C. R. and Würthner, F., Chem. Commun. 20302031 (2004).10.1039/B407551JGoogle Scholar
14. Liang, Z., Nardes, A., Wang, D., Berry, J. J. and Gregg, B. A., Chem. Mater. 21, 49144919 (2009).10.1021/cm902031nGoogle Scholar
15. Woodhouse, M. A., Perkins, C. L., Rawls, M. T., Cormier, R. A., Liang, Z., Nardes, A. and Gregg, B. A., J. Phys. Chem. C 114, 67846790 (2010).10.1021/jp910738aGoogle Scholar
16. Hains, A. W., Liang, Z., Woodhouse, M. A. and Gregg, B. A., Chem. Rev. 110, 66896735 (2010).10.1021/cr9002984Google Scholar