Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T07:44:15.086Z Has data issue: false hasContentIssue false

Solution Processing of V2O5-WO3 Composite Films for Enhanced Li-Ion Intercalation Properties

Published online by Cambridge University Press:  17 April 2019

Chuan Cai
Affiliation:
Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
Dongsheng Guan
Affiliation:
Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
Ying Wang
Affiliation:
Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
Get access

Abstract

We have employed a simple and novel solution processing method to prepare V2O5-WO3 composite films which demonstrate enhanced Li-ion intercalation properties for applications in lithium-ion batteries. It should be noted that this solution processing method employs precursors that only contain the elements of V, W, O and H, which avoids impurity elements such as Na that has been commonly used in other solution methods. The V2O5-WO3 composite films show enhanced Li-ion intercalation properties compared to pure V2O5 and WO3 films. For example, V2O5-WO3 film with a molar ratio V2O5/WO3 of 10/1 exhibits a discharge capacity of 254 mA•h/g, while the pure V2O5 film delivers a discharge capacity of 76 mA•h/g at a high current density of 1.33 A/g. Such enhanced Li-ion intercalation properties are attributed to the reduced crystallinity and increased porosity and surface area in the composite films. In addition, the chronopotentiometric curves of the V2O5-WO3 film with a mol ratio of 10:1 are distinctively different from those of pure oxide films and other composite films with different V2O5/WO3 mol ratios, suggesting a different Li-ion intercalation process in the V2O5-WO3 film with the mol ratio of 10/1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, Y., Takahashi, K., Lee, K., and Cao, G. Z., Adv. Funct. Mater. 16, 1133 (2006).Google Scholar
2. Wang, Y. and Cao, G. Z., Chem. Mater. 18, 2787 (2006).Google Scholar
3. Whittingham, M. S., J. Electrochem. Soc. 123, 315 (1976).Google Scholar
4. Park, H. K., Smryl, W. H., Ward, M. D., J. Electrochem. Soc. 142, 15 (1995).Google Scholar
5. özer, N., Thin Solid Films 305, 80 (1997).Google Scholar
6. Watanabe, T., Ikeda, Y., Ono, T., Hibino, M., Hosoda, M., Sakai, K., Kudo, T, Solid State Ionics 151, 313 (2002).Google Scholar
7. Takahashi, K., Wang, Y., Lee, K., Cao, G., Appl. Phys. A 82, 27 (2006).Google Scholar
8. Kim, Dong-Woo, Kim, Heesoo, Jung, Young-Soo, Song, In Kyu, Baeck, Sung-Hyeon, Journal of Physics and Chemistry of Solids 69 (2008) 1513.Google Scholar
9. Ozer, N., Lampert, C.M., Thin Solid Films 349 (1999) 205.Google Scholar
10. Fontenot, C. J., Wiench, J. W., Pruski, M., Schrader, G. L. J., Phys. Chem. B 104, 11622 (2000).Google Scholar
11. Yebka, B., Pecquenard, B., Julien, C., Livage, J., Solid State Ionics 104, 169 (1997).Google Scholar
12. Fang, G. J., Liu, Z. L., Wang, Y. Q., Liu, H. H., Yao, K. L. J., Phys. D: Appl. Phys. 33, 3018 (2000).Google Scholar
13. Yagia, M., Maruyamaa, S., Sonea, K., Nagaib, K., Norimatsu, T., Journal of Solid State Chemistry 181, 175 (2008).Google Scholar
14. Sun, X. L., Cao, H. T., Liu, Z. M., Li, J. Z., Applied Surface Science 255, 8629 (2009).Google Scholar
15. Lantelme, F., Mantoux, A., Groult, H., Lincot, D. J., Electrochem. Soc. 150, A1202 (2003).Google Scholar
16. Coustier, F., Passerini, S., Smyrl, W.H., Solid State Ionics 100, 247 (1997).Google Scholar
17. Najbar, M., Camra, J., Białas, A., Wesełucha-Birczyńska, A., Borzecka-Prokop, B., Delevoye, L. and Klinowski, J., Phys. Chem. Chem. Phys. 1, 4645 (1999).Google Scholar