Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-30T11:20:00.070Z Has data issue: false hasContentIssue false

Some Theoretical Aspects of the Grüneisen Coefficient for the Equation of State of Solids

Published online by Cambridge University Press:  15 February 2011

Francis Chaissé
Affiliation:
CEA/DIF, B.P. 12, 91680 Bruyeres-le-Châtel, FRANCE e-mail:olivier heuze@cea.fr
Olivier Heuzé
Affiliation:
CEA/DIF, B.P. 12, 91680 Bruyeres-le-Châtel, FRANCE e-mail:olivier heuze@cea.fr
Get access

Abstract

The aim of this study is to specify the Güneisen coefficient variation versus volume γ(V). First for isotropic solid, and in the anharmonic approximation we recall the various classical laws on γ(V). On the other hand, the shock wave physics have shown the experimental evidence of the linear relationship between shock velocity (U) versus jump of particle velocity (u) with some further consequences on γ(V) [cf. MRS Symp. Proc. vol 731 paper W-8.1 (Spring 2002)]. In this paper, we point out the failure of the γ(V) representation in the anharmonic approximation to reproduce the shock wave data U(u). Taking now into account the anharmonic effects in solids, we propound a new analysis of the γ(V) law which is well suited for the shock wave physics of solids.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]McQueen, R.G. and Marsh, S.P. and Taylor, J.W. and Fritz, J.N. and Carter, W.J., High Velocity Impact Phenomena, edited by Kinslow, Ray, Academic Press (1970).Google Scholar
[2]Walsh, J.M. and Christian, R.H., Phys. Rev., 97, pp. 1544 (1955).Google Scholar
[3]McQueen, R.G. and Marsh, S.P., J. Appl. Phys., 31, pp. 1253 (1960).Google Scholar
[4]McQueen, R.G. and Marsh, S.P. and Carter, W.J., Behavior of Dense Media Under High Dynamic Pressure, Gordon and Breach, NY, pp. 67 (1968).Google Scholar
[5]Prieto, F.E. and Renero, C., J. Phys. Chem. Solids, 37, pp. 151160 (1976).Google Scholar
[6]Bushaman, A. and Fortov, V.E., Sov. Tech. Rev. B Therm. Phys. 1. pp. 219336 (1987).Google Scholar
[7]Oh, K.H. and Persson, P.A., J. Appl. Phys., 10 pp. 65 (1989).Google Scholar
[8]Menikoff, R. and Plohr, B.J., Rev. Modern Phys., 61, 1, pp. 75130 (1989).Google Scholar
[9]Renero, C. and Prieto, F.E., Shock Waves, 2, pp. 201202, (1992).Google Scholar
[10]Yoo, C.S. and Akella, J. and Moriarty, J.A., Phys. Rev. B, 48, pp. 15529 (1993).Google Scholar
[11]O.Heuzé and Goutelle, J.C. and Baudin, G., APS Conference on Shock Compression in Comdensed Matter 2001, AIP (2002).Google Scholar
[12]Chaissé, F. and Heuzé, O., Mat.Res.Soc.Symp.Proc., 731, pp. W8.1.14. (2002).Google Scholar
[13]Chaisse, F. and Henze, O., Rev.Sci.Tech.Def., 55, pp.143154 (2002).Google Scholar
[14]Thompson, P.A., Phys.Fluids, 14, 9, pp. 1843 (1971).Google Scholar
[15]YZel'dovitch, a.B. and Raizer, Yu.P., “Physics of shock Waves and High-Temperature Hydrodynamics Phenomena”, pp.699, Academic Press, II (1967) or Dover Publications (2002).Google Scholar
[16]Dugdale, J.S. and MacDonald, D.K., Phys. Rev., 89, pp832 (1939).Google Scholar
[17]Rice, M.H., Sol. State Phys., 6, pp.1 (1958).Google Scholar
[18]Slater, J.C., “Introduction to the Chemical Physics”, McGraw Hill (1939).Google Scholar
[19]Vashchenko, V.Ya. and Zubarev, V.N., Sov.Phys.Sol.State, 5, pp.653 (1963).Google Scholar