Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-08T04:18:07.388Z Has data issue: false hasContentIssue false

Special C44 Isomers

Published online by Cambridge University Press:  22 February 2011

C.T. White
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
M. Lyons
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
D.W. Brenner
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
J.W. Mintmire
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
D.H. Robertson
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
R.C. Mowrey
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
B.I. Dunlap
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

O'Keefe, Ross, and Baronavski, using laser vaporization of graphite and time-of-flight mass spectrometric detection have observed enhanced abundances of C+N cluster ions not only for n=50 and 60 but also for N = 44. Stimulated by this experimental result we have carried out a search for unusually stable C44 fullerene isomers. In this search, all possible 87 fullerene isomers of C44 were first generated and then classified according to the number of bonds, p, shared by abutting pentagons. We found that for C44 the minimum value of p is 8 and that there are only two C44 fullerenes with this value of p. Self-consistent geometry optimized calculations at the AM1 level show that these two special C44 fullerene isomers—although differing from one another by only about 0.1 eV in total energy—are over 1.0 eV more stable than any of the other possible 85 fullerene isomers of C44. These self-consistent-field calculations not only single out these two C44 fullerenes for special attention, but also further confirm the instability of abutting pentagons for lower fullerenes (those fullerenes with less than 60 carbon atoms).

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Krätschmer, W., Fostiropoulos, K., and Huffman, D.R., Chem. Phys. Lett. 170, 167 (1990).Google Scholar
[2] Krätschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R., Nature (London) 347, 354 (1990).Google Scholar
[3] Diederich, F., Ettl, R., Rubin, Y., Whetten, R.L., Beck, R., Alvarez, M., Anz, S., Sensharma, D., Wudl, F., Khemani, K.C., and Koch, A., Science 252, 548 (1991).Google Scholar
[4] Diederich, F., Whetten, R.L., Thilgen, C., Ettl, R., Chao, I., and Alvarez, M.M., Science 254, 1768 (1991).Google Scholar
[5] Ettl, R., Chao, I., Diederich, F., and Whetten, R.L., Nature (London) 353, 149 (1991).Google Scholar
[6] Kroto, H.W. and McKay, K., Nature (London) 331, 328 (1988).Google Scholar
[7] Manolopoulos, D.E., May, J.C., and Down, S.E., Chem. Phys. Lett. 181, 105 (1991).Google Scholar
[8] Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature (London) 318, 162 (1985).Google Scholar
[9] Rohlfing, E.A., Cox, D.M., and Kaldor, A., J. Chem. Phys. 81, 3322 (1984).Google Scholar
[10] Kroto, H.W., Nature (London) 329, 529 (1987).Google Scholar
[11] Curl, R.F. and Smalley, R.E., Science 242, 1017 (1988).Google Scholar
[12] Cox, D.A., Trevor, D.J., Reichmann, K.C., and Kaldor, A., J. Am. Phys. Soc. 108, 2459 (1986).Google Scholar
[13] Yang, Y.A., Xia, P., Junkin, A.L., and Bloomfield, L.A., Phys. Rev. Lett. 66,1205 (1991).Google Scholar
[14] McElvany, S.W., Nelson, H.H., Baronavski, A.P, Watson, C.H., and Eyler, J.R., Chem. Phys. Lett. 134, 214 (1987).Google Scholar
[15] Schmalz, T.G., Seitz, W.A., Klein, D.J., and Hite, G.E., J. Am. Chem. Soc. 110, 1113 (1988).Google Scholar
[16] Kroto, H.W. and McKay, K., Nature (London) 331, 328 (1988).Google Scholar
[17] Fowler, P.W. and Manolopoulos, D.E., Nature (London) 355, 428 (1992).Google Scholar
[18] Manolopoulos, D.E., May, J.C., and Down, S.E., Chem. Phys. Lett. 181, 105 (1991).Google Scholar
[19] Liu, X., Schmalz, T.G., and Klein, D.J., Chem. Phys. Lett 1992, 192, 331.Google Scholar
[20] Smalley, R.E., Acc. Chem. Res. 25, 98 (1992).Google Scholar
[21] White, C.T., Mintmire, J.W., Mowrey, R.C., Brenner, D.W., Robertson, D.H., Harrison, J.A., and Dunlap, B.I., Buckninsterfullerenes edited by Billups, W.E., Cuifolini, M. (VHF Publishers inc., New York, 1993), Ch.6 and references therein.Google Scholar
[22] Brenner, D.W., Dunlap, B.I., Harrison, J.A., Mintmire, J.W., Mowrey, R.C., Robertson, D.H., and White, C.T., Phys. Rev. B 44, 3479 (1991).Google Scholar
[23] O'Keefe, A., Ross, M.M., and Baronavski, A. P., Chem. Phys. Lett. 130, 17 (1986).Google Scholar
[24] Dewar, M.S.J., Zoebisch, E.G., Healy, E.F., and Stewart, J.J.P., J. Am. Chem. Soc. 107, 3902 (1985).Google Scholar
[25] Lyons, M., Dunlap, B.I., Brenner, D.W., Robertson, D.H., Mowrey, R.C., Mintmire, J.W., and White, C.T., Physics and Chemistry of Finite Systems: From Cluster to Crystals, NATO ASW Series edited by Jena, P., Khanna, S.N., and Rao, B.K. (Kluwer Academic Publishers, Dordrecht, 1992), p. 1347.Google Scholar
[26] Stone, A.J. and Wales, D.J., Chem. Phys. Lett. 128, 501 (1986).Google Scholar
[27] Brenner, D.W., Phys. Rev. B 42, 9458 (1990).Google Scholar