Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-18T14:25:36.979Z Has data issue: false hasContentIssue false

Spectral Widths in the Rate Equations for Photodesorption by Laser Infrared

Published online by Cambridge University Press:  21 February 2011

Joachim Heidberg*
Affiliation:
Institut für Physikalische Chemie und Elektrochemie der Universität Hannover, D-3000 Hannover, West Germany
Get access

Abstract

Desorption and evaporation from solid surfaces are induced with high yield and wavelength selectivity by excitation of internal adsorbate vibrations with resonant laser infrared. Simple rate equations describe essential features of the process and relate the photoreaction rate and yield to the intensity, the duration of laser-solid surface interaction and molecular properties of the adsorbate. The significance in photodesorption of the experimentally determined spectral widths is shown. Considering the spectral widths in the theory brings the order of the calculated photo-desorption rates for CH3 F-NaCl and the measured rates (also yields) in better concert.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.a. Heidberg, J., Stein, H., Nestmann, A., Hoefs, E., Hussla, I., Symposium “Laser-Solid Interactions and Laser Processing”, 1978, Materials Research Society, Boston. - “Laser-Solid Interactions and Laser Processing”, Ferris, S.D., Leamy, H.J. and Poate, J. M., eds., American Institute of Physics, New York 1979, pp. 4954.Google Scholar
b. Heidberg, J., Stein, H., Riehl, E. and Nestmann, A., Z. Physikalische Chem. N. F. 121, 145 (1980).CrossRefGoogle Scholar
c. Heidberg, J., Stein, H., Riehl, E., Phys. Rev. Letters 49, 666 (1982).Google Scholar
d. Heidberg, J., Stein, H., Riehl, E. in: “Vibrations at Surfaces”, Caudano, R. Gilles, J.-M., Lucas, A.A., eds. (Plenum Press, New York 1982) pp. 1738 .CrossRefGoogle Scholar
e. Heidberg, J., Stein, H., Riehl, E., Surface Sci. 126, 183 (1983).Google Scholar
f. Heidberg, J., Stein, H., Riehl, E. and Hussla, I. in “Surface Studies with Lasers”, Aussenegg, F.R., Leitner, A., Lippitsch, M.E. (Springer Verlag, Berlin 1983) pp. 226229.CrossRefGoogle Scholar
g. Chuang, T.J., J. Chem. Phys. 76, 3828 (1982).CrossRefGoogle Scholar
h. Chuang, T.J. and Seki, H., Phys. Rev. Lett. 49, 382 (1982).Google Scholar
i. Chuang, T.J. in “Vibrations at Surfaces”, Brundle, C.R. and Morawitz, H., eds. (Elsevier, Amsterdam 1983) pp. 125138.Google Scholar
j. Chuang, T.J., Surface Sci. Reports 3, 1105 (1983).CrossRefGoogle Scholar
2.a. Gortel, Z.W., Kreuzer, H.J., Piercy, P. and Teshima, R., Phys. Rev. B 27, 5066 (1983).Google Scholar
b. Kreuzer, H.J. and Lowy, D.N., Chem. Phys. Lett. 78, 50 (1981).CrossRefGoogle Scholar
c. Gortel, Z.W. and Kreuzer, H.J., Surf. Sci. 131, 359 (1983).Google Scholar
d. Lucas, D. and Ewing, G.E., Chem. Phys. 58, 385 (1981). see alsoGoogle Scholar
e. Jedrzejek, C., Freed, K.F., Efrima, S. and Metiu, H., Surf. Sci. 109, 191 (1981).CrossRefGoogle Scholar
f. Murphy, W.C. and George, T.F., Surf. Sci. 102, 46 (1981).Google Scholar
3.a. Haken, H., Licht and Materie I, Elemente der Quantenoptik (B-I Wissenschaftsverlag, Mannheim 1979).Google Scholar
b. Quack, M., Adv. Chem. Phys. 50, 395473 (1982).Google Scholar
4. Quack, M., Ber. Bunsenges. Phys. Chem. 83, 757 (1979).CrossRefGoogle Scholar
5. Apkarian, V.A. and Weitz, E., J. Chem. Phys. 76, 5796 (1982).CrossRefGoogle Scholar