Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-31T11:23:54.342Z Has data issue: false hasContentIssue false

Spectroscopic Characterization of the α⇌β Crystalline Phase Transition in Poly(Butylene Terephthalate) and its Copolymers with Poly(Tetramethylene Oxide).

Published online by Cambridge University Press:  26 February 2011

Eva Dobrovolny-Marand
Affiliation:
Department of Polymer Science and Engineering University of Massachusetts Amherst, Massachusetts 01003
Shaw Ling Hsu
Affiliation:
Department of Polymer Science and Engineering University of Massachusetts Amherst, Massachusetts 01003
Get access

Abstract

The stress-induced crystalline α⇌β phase transition found in poly(butylene terephthalate) and its copolymers with poly(tetramethylene oxide) has been studied by Fourier transform infrared spectroscopy coupled with mechanical measurements. The phase transformation behavior was explained in terms of a cooperative model which considered both intermolecular as well as intramolecular interactions within the crystal. It was shown that the strength of the intramolecular interactions increased with length of the hard segments and that the strength of the intermolecular interactions increased with perfection and lateral size of the crystals. The intermolecular interaction was assumed to be dominated by the interaction between neighboring terephthalate groups. The “mean” intramolecular energy was estimated at 0.40 Kcal/mole. This calculation was based on the potential energy of rotations of a carbonyl group about a benzene-carbonyl bond. Cooperativity between chains diminished when the surface to volume ratio increased above 2 x 10-2 Å-1.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lasch, J. E., Burchell, D. J., Masoaka, T. and Hsu, S. L., Applied Spectroscopy, 38 (3), 351 (1984).CrossRefGoogle Scholar
2. Boye, C. A. and Overton, J. R., Bull. Am. Phys. Soc., Ser. 19, 352 (1974).Google Scholar
3. Yakouchi, M., Sakakibara, Y., Chatani, Y., Tadokoro, H., Tanaka, T. and Yoda, K., Macromolecules, 9 (2), 266 (1976).CrossRefGoogle Scholar
4. Jakeways, R., Ward, I. M., Wilding, M. A., Hall, I. H., Desborough, I. J. and Pass, M. G., J. Polymer Sci.: Polymer Phys. Edn., 13, 799 (1975).Google Scholar
5. Ward, I. M. and Wilding, M. A., Polmer, 18, 327 (1977).Google Scholar
6. Stambaugh, B., Lando, J. B. and Koenig, J. L., J. Polymer Sci.: Poly. Phys. Edn., 17, 1963 (1979).Google Scholar
7. Holland-Moritz, K. and Siesler, H. W., Polymer Bulletin, 4, 165 (1981).CrossRefGoogle Scholar
8. Gillette, P. C., Dirlikov, S. D., Koenig, J. L. and Lando, J. B., Polymer, 23, 1759 (1982).Google Scholar
9. Gillette, P. C., Lando, J. B. and Koenig, J. L., Polymer, 26, 235 (1985).Google Scholar
10. Cella, R. J., J. Polymer Sci.: Symp. 42, 727 (1973).Google Scholar
11. Wegner, G., Fujii, T., Meyer, W. and Lieser, G., Angewandte Makromol. Chem., 74 (1204), 295 (1978).Google Scholar
12. Briber, R. M. and Thomas, E. L., Polymer, 26, 8 (1985).Google Scholar
13. Stein, R. S. and Misra, A., J. Polymer Sci.: Polymer Phys. Edn., 18, 327 (1980).Google Scholar
14. Bandara, U., Droscher, M. and Thomas, E. L., Colloid & Polymer Sci., 262, 538 (1984).CrossRefGoogle Scholar
15. Mencik, Z. J., Polymer Sci.: Polymer Phys. Edn., 13, 2173 (1975).Google Scholar
16. Desborough, I. J. and I. H. Hall, 18, 825 (1977).Google Scholar
17. Brereton, M. G., Davies, G. R., Jakeways, R., Smith, T. and Ward, I. M., Polymer, 19, 17 (1978).CrossRefGoogle Scholar
18. Alter, U. and Bonard, R., Colloid & Polymer Sci., 258, 332 (1980).CrossRefGoogle Scholar
19. Datye, V. K. and Taylor, P. L., Macromolecules, 18 (4) 671 (1985).CrossRefGoogle Scholar
20. Zachariades, A. E., Mead, W. T. and Porter, R. S., in Ultrahigh Modulus Polymers, edited by Ciferri, A. and Ward, I. M. (Applied Science, London, 1978).Google Scholar
21. Burchell, D. J., Lasch, J. E., Farris, R. J., and Hsu, S. L., Polymer, 23, 965 (1982).Google Scholar
22. Burchell, D. J., Lasch, J. E., Dobrovolny, E., Page, N., Domian, J., Farris, R. J., and Hsu, S. L., Applied Spectroscopy, 38, 343 (1984).Google Scholar
23. Siesler, H. W., J. Polymer Sci.: Polymer Letters Edn., 19, 453 (1979).Google Scholar
24. Li-Lan Zhu and Wegner, G., Makromol. Chem. 182, 3625 (1981).CrossRefGoogle Scholar
25. Tonelli, A. E., J. Polymer Sci.: Polymer Lett. Edn., 11, 441 (1973).Google Scholar