Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T02:23:37.006Z Has data issue: false hasContentIssue false

Spin Effects of Low-dimensional Electron Gases Studied by Far-infrared Photoconductivity Experiments

Published online by Cambridge University Press:  15 March 2011

C. -M. Hu*
Affiliation:
Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstraße 11, D-20355 Hamburg, Germany Email: hu@physnet.uni-hamburg.de
Get access

Abstract

We review our recent work on spin effects in low-dimensional electron gases studied using far-infrared photoconductivity technique. We measure the spin-orbit coupling parameter α via spectroscopy by detecting the combined resonance. Detailed filling-factor dependent study shows the collective nature of this excitation, in accordance to theoretical predictions that both Kohn and Larmor theorem are broken for long-wavelength excitations that changes both the Landau and spin quantum numbers. We find that the long spin-relaxation time of a two-dimensional electron gas results in a novel bolometric spin effect, which gives rise to a substantial photo resistance change by reversing the spin polarization of electrons at the Fermi-level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abstreiter, G., Kneschaurek, P., Kotthaus, J.P., and Koch, J.F., Phys. Rev. Lett. 32, 104 (1974); S.J. Allen, Jr., D.C. Tsui, and J.V. Dalton, Phys. Rev. Lett. 32, 107 (1974).Google Scholar
2. Stein, D., Klitzing, K.v., andWeimann, G., Phys. Rev. Lett. 51, 130 (1983).Google Scholar
3. Das, B., Datta, S., andReifenberger, R., Phys. Rev. B 41, 8278 (1990).Google Scholar
4. McCombe, B.D., Bishop, S.G., and Kaplan, R., Phys. Rev. Lett. 18, 748 (1967); B.D. McCombe, Phys. Rev. 181, 1206 (1969).Google Scholar
5. Nitta, J. et al. , Phys. Rev. Lett. 78, 1335 (1997); G. Engels et al., Phys. Rev. B 55, 1958 (1997); C.-M. Hu et al., ibid. 60, 7736 (1999); T. Matsuyama et al., ibid.61, 15 588 (2000); D. Grundler, Phys. Rev. Lett. 84, 6074 (2000).Google Scholar
6. Datta, S. and Das, B., Appl. Phys. Lett. 56, 665 (1990).Google Scholar
7. Chakraborty, T. and Pietiläinen, P., The Quantum Hall Effects: Fractional and Integral, (Springer, Berlin, MA, 1995).Google Scholar
8. Ando, T., Fowler, A.B., and Stern, F., Rev. Mod. Phys. 54, 437 (1982).Google Scholar
9. Kallin, C. and Halperin, B.I., Phys. Rev. B 30, 5655 (1984); A. H. MacDonald and C. Kallin, Phys. Rev. B 40, 5795 (1989).Google Scholar
10. Kohn, W., Phys. Rev. 123, 1242 (1961).Google Scholar
11. Pinczuk, A., Dennis, B.S., Heiman, D., Kallin, C., Brey, L., Tejedor, C., Schmitt-Rink, S., Pfeiffer, L.N., and West, K.W., Phys. Rev. Lett. 68, 3623 (1992).Google Scholar
12. Hu, C.-M., Batke, E., Köhler, K., and Ganser, P., Phys. Rev. Lett. 75, 918 (1995); Phys. Rev. Lett. 76, 1904 (1996).Google Scholar
13. Neppl, F., Kotthaus, J.P., and Koch, J.F., Phys. Rev. B 19, 5240 (1979).Google Scholar
14. Wang, J.K., Tsui, D.C., Santos, M., and Shayegan, M., Phys. Rev. B 45, 4384(1992).Google Scholar
15. Hirakawa, K., Yamanaka, K., Endo, M., Saeki, M., and Komiyama, S., Phys. Rev. B 63, 085320 (2001).Google Scholar
16. Kotthaus, J.P., “Infrared excitations in electronic systems with reduced dimensionality”, NATO ASI Series, Interface, quantum wells, and superlattices, ed. Leavens, C.R. and Taylor, R. (Plenum Press, New York and London, 1988) pp. 95126.Google Scholar
17. Hu, C.-M., Zehnder, C., Heyn, Ch., Heitmann, D., Phys. Rev. B, 67, 201302 (R) (2003).Google Scholar
18. Bittkau, K., Menk, Ch., Heyn, Ch., Heitmann, D., and Hu, C.-M., Phys. Rev. B, 68 195303 (2003).Google Scholar
19. Zehnder, C., Wirthmann, A., Heyn, Ch., Heitmann, D. and Hu, C.-M., Europhys. Lett., 63, 576 (2003).Google Scholar
20. Brosig, S., Ensslin, K., Warburton, R.J., Nguyen, C., Brar, B., Thomas, M., and Kroemer, H., Phys. Rev. B 60,13 989(1999).Google Scholar
21. Longo, J.P. and Kallin, C., Phys. Rev. B 47, 4429 (1993).Google Scholar
22. Kern, K., Heitmann, D., Grambow, P., Zhang, Y.H., and Ploog, K., Phys. Rev. Lett. 66, 1618 (1991); A. Lorke, J.P. Kotthaus, and K. Ploog, Superlattices Microstruct. 9, 103 (1991); Y. Zhao, D.C. Tsui, M. Santos, M. Shayegan, R.A. Ghanbari, D.A. Antoniadis, and H.I. Smith, Appl. Phys. Lett. 60, 1510 (1992).Google Scholar
23. Mikhailov, S.A. and Volkov, V.A., Phys. Rev. B 52, 17260 (1995); S.A. Mikhailov, ibid.54, 14293 (1996).Google Scholar
24. Kuzma, N.N., Khandelwal, P., Barrett, S.E., Pfeiffer, L.N., and West, K.W., Science 281, 686 (1998); J.M. Kikkawa and D.D. Awschalom, Nature 397, 139 (1999).Google Scholar
25. Žutić, I., Fabian, J., and Sarma, S. Das, Rev. Mod. Phys. 76, 323 (2004).Google Scholar