Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-29T22:22:34.764Z Has data issue: false hasContentIssue false

Sputtered Pb(Zr, Ti)O3 Thin Films for Ferroelectric Capacitors

Published online by Cambridge University Press:  10 February 2011

T. Sakoda
Affiliation:
Texas Instruments Tsukuba R&D Center Ltd., 17 Miyukigaoka, Tsukuba, Ibaraki 305–0841, JAPAN
K. Aoki
Affiliation:
Texas Instruments Tsukuba R&D Center Ltd., 17 Miyukigaoka, Tsukuba, Ibaraki 305–0841, JAPAN
Y. Fukuda
Affiliation:
Texas Instruments Tsukuba R&D Center Ltd., 17 Miyukigaoka, Tsukuba, Ibaraki 305–0841, JAPAN
Get access

Abstract

Sputtered Pb(Zr, Ti)O3 thin films with superior ferroelectric properties were successfully obtained by controlling the grain structure and the film compositions. We found that amorphous PbTiO3 buffer layers are effective in forming PZT thin films with fine dense grains. The sputtered PZT thin films with Ti-rich phase showed excellent ferroelectric properties. The polarization retention properties of PZT capacitors with Ti-rich phase are remarkable, and the value of the retained polarization density after 10 years is expected to be larger than 40 μC/cm2. Further, 150-nm-thick PZT capacitors with Zr/Ti=30/70 showed 2P, at 1.5 V of more than 30 μC/cm2, and good retention property. These results indicate the potential of the lower voltage operation of sputtered PZT capacitors by optimizing the film composition and thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Suu, K., Osawa, A., Nishioka, Y. and Tani, N., Jpn. J. Appl. Phys. 36, p. 5789 (1997).Google Scholar
2. Doi, H., Atsuki, T., Soyama, N., Sakai, G. et al. , Ogi Jpn. J. Appl. Phys. 33, p. 5159 (1994).Google Scholar
3. Fujisawa, H., Yoshida, M., Shimizu, M. and Niu, H., Jpn. J. Appl. Phys. 37, p. 5132 (1998).Google Scholar
4. Fukuda, Y. and Aoki, K., Jpn. J. Appl. Phys. 36, p. 5793 (1997).Google Scholar
5. Sakoda, T., Aoki, K., Hashimoto, S. and Fukuda, Y., Integrated Ferroelectrics 21, p. 385 (1998).Google Scholar
6. Shimizu, M., Sugiyama, R., Fujisawa, H. and Shiosaki, T., Jpn. J. Appl. Phys. 33, p. 5167 (1994).Google Scholar
7. Aoki, K., Fukuda, Y., Numata, K. and Nishimura, A., Jpn. J. Appl. Phys. 35, p. 2210 (1996).Google Scholar
8. Aoki, K., Sakoda, T. and Fukuda, Y., Jpn. J. Appl. Phys. 37, p. L522 (1998).Google Scholar
9. Shimada, Y., Azuma, M., Nakao, K. et al. , Jpn. J. Appl. Phys. 36, p. 5912 (1997).Google Scholar