Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-01T16:16:43.585Z Has data issue: false hasContentIssue false

Step-Driven Surface Segregation and Ordering During Si-Ge MBE Growth

Published online by Cambridge University Press:  25 February 2011

D. E. Jesson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
J.-M. Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, KIAOR6, Canada
D. C. Houghton
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, KIAOR6, Canada
Get access

Abstract

An important role of type SB step edges in determining the as-grown microstructure of Si-Ge superlattices and alloys is implicated from direct Z-contrast images of as-grown structures. A variety of different ordered phase variants can arise at each Si on Ge interface as a result of vertical segregation during superlattice growth. A new monoclinic-ordered structure is predicted to arise as a result of lateral segregation during alloy growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.See, for example, Silicon Molecular Beam Epitaxy, edited by Bean, J. C., Iyer, S. S., and Wang, K. L., Mat. Res. Soc. Proc. 220 (1991).Google Scholar
2. Pennycook, S. J. and Jesson, D. E., Phys. Rev. Lett. 64, 938 (1990).Google Scholar
3. Pennycook, S. J. and Jesson, D. E., Ultramicroscopy 37, 14 (1991).Google Scholar
4. Jesson, D. E., Pennycook, S. J., and Baribeau, J.-M., p. 938 in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U., Mat. Res. Soc. Proc. 183, Pittsburgh, Pennsylvania, 1990.Google Scholar
5. Jesson, D. E., Pennycook, S. J., and Baribeau, J.-M., Phys. Rev. Lett. 66, 750 (1991).Google Scholar
6. Jesson, D. E. and Pennycook, S. J., MRS Bulletin 16, No. 3, 34 (1991).Google Scholar
7. Jesson, D. E. and Pennycook, S. J., Scanning 13, Suppl. I, 65 (1991).Google Scholar
8. Chadi, D. J., Phys. Rev. Lett. 59, 1691 (1987).Google Scholar
9. Jesson, D. E., Pennycook, S. J., and Baribeau, J.-M., p. 141 in Silicon Molecular Beam Epitaxy, edited by Bean, J. C., Iyer, S. S., and Wang, K. L., Mat. Res. Soc. Proc. 220 (1991).Google Scholar
10. Hamers, R. J., Köhler, U. K., and Demuth, J. E., J. Vac. Sci. Technol. A8, 195 (1990).Google Scholar
11. Jesson, D. E., Pennycook, S. J., Baribeau, J.-M., and Houghton, D. C., Phys. Rev. Lett. 68, 2062 (1992).Google Scholar
12. Lockwood, D. J., Rajan, K., Fenton, E. W., Baribeau, J.-M., and Denhoff, M. W., Solid State Commun. 61, 465 (1987).Google Scholar
13. Kuan, T. S., Iyer, S. S., and Yeo, E. M., p. 580 in Proc. of Forty-Seventh Annual Meeting EMSA, San Francisco Press, San Francisco, 1989.Google Scholar
14. LeGoues, F. K., Kesan, V. P., Kuan, T. S., and Iyer, S. S., p. 100 in Proc. of the First Topical Symposium on Si Based Heterostructures, Toronto, 1990 (unpublished).Google Scholar
15. Ourmazd, A. and Bean, J. C., Phys. Rev. Lett. 55, 765 (1985).Google Scholar
16. Iyer, S., Morkoc, H., Zabel, H., and Otsuka, N., Comments on Cond. Mat. Phys. 15, 1 (1989).Google Scholar
17. LeGoues, F. K., Kesan, V. P., and Iyer, S. S., Phys. Rev. Lett. 64, 40 (1990).Google Scholar
18. Hoeven, A. J., Loenen, E. J. Van, Dijkkamp, D., Lenssinck, J. M., and Dieleman, J., Thin Solid Films 183, 263 (1989).Google Scholar
19. LeGoues, F. K., Kesan, V. P., Iyer, S. S., Tersoff, J., and Tromp, R., Phys. Rev. Lett. 64, 2038 (1990).Google Scholar
20. Jesson, D. E., Tischler, J. Z., Pennycook, S. J., Baribeau, J.-M., and Houghton, D. C. (to be published).Google Scholar