Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T16:39:25.177Z Has data issue: false hasContentIssue false

Stimulated Blue Emission and Second Harmonic Generation From Films of Ultrasmall Si Nanoparticles

Published online by Cambridge University Press:  17 March 2011

Munir H. NAYFEH
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street Urbana, Illinois 61801, USA
Joel Therrien
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street Urbana, Illinois 61801, USA
Gennadiy Belomoin
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street Urbana, Illinois 61801, USA
Osman Akcakir
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street Urbana, Illinois 61801, USA
Nicolas Barry
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street Urbana, Illinois 61801, USA
Enrico Gratton
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street Urbana, Illinois 61801, USA
Get access

Abstract

We describe a procedure for dispersion bulk Si into ultrasmall nanoparticles, much smaller than what is available today, with high throughput and excellent size definition and control. The quantum dots are ∼ 1 nm in diameter and contain 29 Si atoms[1-2]. We show most unexpected and totally surprising phenomenon. Unlike bulk Si, an optically inert indirect gap material, the particles are extremely active optically in the blue, exceeding the activity of fluorescein, such that single particles are readily detected and imaged, using two-photon near- infrared femto second excitation. This comes nearly a decade after Canham first surprised the scientific community by reporting red luminescence from anodized Si[3]. In addition to being ultrabright, the particles have other useful properties that are unlike those of bulk including being a source of stimulated emission and collimated beam emission[4-5], and harmonic generation[6]. Single electron charging and the confinment energy spacing, both are much larger than the thermal energy[7]. They can be formed into colloids, crystals, films, and collimated beams for applications in the electronics, optoelectronics and biomedical industries. The synthesis utilizes straightforward, low-cost, environmentally benign present-day commercial technologies and material: abundant Si, common chemicals and electricity. The procedure is readily amenable to large-volume production, easy recovery, and controlled delivery.

Using density functional with exchange correlation, configuration interaction and Monte Carlo theory, we constructed a structural propotype for 29 atoms (magic number for the Td symmetry and spherical shape), giving a size, an energy gap and an absorption spectrum that agree with experiment[8]. In the prototype, twenty four atoms form a network of reconstructed Si-Si species on the surface, with five atoms constituting a tetrahedral core.

The results suggest that the surface reconstructed network is the source of the new properties. In these particles, the elasticity drops, atoms become amenable to large displacement, and are subjected to unballanced atomic forces, conditions under which novel molecular structure or configuration, distinct from bulk, and which otherwise does not exist may form. This structure may constitute a transition between the bulk and atomistic phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Akcakir, O., Therrien, J., Belomoin, G., Barry, N., Gratton, E., and Nayfeh, M., Appl. Phys.Lett. 76, 1857 (2000)Google Scholar
2 Belomoin, G., Therrien, J., and Nayfeh, M., Appl. Phys. Lett. 77, 779 (2000)Google Scholar
3 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990); A. G. Cullis, L.T. Canham, and P.Calcott, J. Appl. Phys. 82, 909 (1997)Google Scholar
4 Nayfeh, M., Akcakir, O., Therrien, J., Yamani, Z., Barry, N., Yu, W., and Gratton, E., .Phys. Lett. 75, 4112 (1999)Google Scholar
5 Nayfeh, M., Barry, N., Therrien, J., Akcakir, O., Gratton, E., Belomoin, G., APL (In Press)Google Scholar
6 Nayfeh, M., Akcakir, O., Belomoin, G., Barry, N., Therrien, J., and Gratton, E., Appl. Phys.Lett. December 25, 2000 Google Scholar
7 Therrien, J., Belomoin, G., and Nayfeh, M., Appl. Phys. Lett. 77, 1668 (2000)Google Scholar
8 Mitas, L., Therrien, J., Twesten, R., Belomoin, G., Akcakir, O, and Nayfeh, M. (Submitted)Google Scholar
9 Yamani, Z., Thompson, H., Abuhassan, L. and Nayfeh, M. H., Appl. Phys. Lett. 70, 3404 (1997); D.Andsager, J. Hilliard, J. M. Hetrick, L. H. Abuhassan, M. Plisch, and M. H. Nayfeh, J. Appl. Phys. 74, 4783 (1993)Google Scholar
10 Yamani, Z., Ashhab, S., Nayfeh, A. and Nayfeh, M., J. Appl. Phys. 83, 3929 (1998); Z. Yamani, A. Alaql, J. Therrien, O. Nayfeh, M. Nayfeh, Appl. Phys. Lett. 74, 3483 (1999)Google Scholar
11 Thompson, W.H., Yamani, Z., Abuhassan, L., Gurdal, O., and Nayfeh, M., Appl. Phys. Lett. 73, 841 (1998); W. H. Thompson, Z. Yamani, L. Abuhassan, J. Green, M. Alhassan, and M. Nayfeh, J.Appl. Phys. 80, 5415 (1996)Google Scholar
12 Allan, G., Delerue, C., Lannoo, M., Martin, E., Phys. Rev. B 52, 11982 (1995)Google Scholar
13 Hanamura, E., Phys. Rev B 37, 1273 (1988)Google Scholar
14 Brus, L. E., J. Chem. Phys. 80, 4403 (1984)Google Scholar
15 Frisch, M. J. et al. , GAUSSIAN98, Gaussian, Inc.; see, eg, Artacho, E. and Yndurain, F., Phys. Rev. Lett. 62, 2491 (1989); J.B. Foresman, M.Head-Gordon, J. A. Pople, J. Phys. Chem. 96, 135 (1992); L. Mitas, Comp. Phys. Commun. 97, 107 (1996); D.M. Ceperley and L. Mitas, in Advances in Chemical Physics, Vol. XCIII, Ed. by I. Prigogine and S.A. Rice, Wiley, New York 1996, pp. 1-38Google Scholar
16 L-W. Wang, and Zunger, A., Phys. Rev. Lett. 73, 1039 (1994)Google Scholar
17 Penn, D. R., . Rev. 128, 2093 (1962); R. Tsu, L.Ioriatti, J. Harvey, H. Shen and R. Lux, Mater. Res. Soc. symp. Proc. 283, 437 (1993)Google Scholar
18 Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 76, 29611 (1996)Google Scholar
19 Nayfeh, M., Rigakis, N., and Yamani, Z., Phys. Rev. B 56, 2079 (1997); MRS Proceedings, 486, 243 (1998)Google Scholar
20 Yamani, Z., Alaql, A., Therrien, J., Nayfeh, O. and Nayfeh, M, Appl. Phys. Lett. 74, 3483 (1999)Google Scholar
21 Yariv, A.,Quantum Electronics, John Wiley & Sons (1975)Google Scholar
22 Shen, Y. R. and Bloembergen, N., Phys. Rev. 137, A1787 (1965); J. A. Armstrong, N. Bloembergen, J. Dunning, and P. S. Pershan, Phys. Rev. 127, 1918 (1962)Google Scholar