Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-24T15:19:32.128Z Has data issue: false hasContentIssue false

Stoichiometrically Controlled Solid State Synthesis and Crystal Growth of C60H2

Published online by Cambridge University Press:  22 February 2011

B. Morosin
Affiliation:
Sandia National Laboratories, Mail Stop 0345, P. O. Box 5800, Albuquerque, NM, 87185-0345
Joshua Jacobs
Affiliation:
Sandia National Laboratories, Mail Stop 0345, P. O. Box 5800, Albuquerque, NM, 87185-0345
Craig Henderson
Affiliation:
Sandia National Laboratories, Mail Stop 9404, P. O. Box 969, Livermore, CA, 94551-9404
James E. Schirber
Affiliation:
Sandia National Laboratories, Mail Stop 9404, P. O. Box 969, Livermore, CA, 94551-9404
Get access

Abstract

We have demonstrated the direct solid state synthesis of C60H2 by controlling the amount of hydrogen introduced into the reaction with C60. Palladium hydride has been used as the source of hydrogen. The main product 1,2-C60H2 is the isomer previously predicted by computational studies to be the lowest in energy of the possible 23 isomers; in addition, small amounts of the thermodynamically most stable isomer of C60H2, 1,2,3,4-C60H2, has also been obtained. To determine structural parameters by x-ray diffraction, crystal growth from various solvents yielded complex solventcontaining crystals which were examined; however, the complex nature of these crystals have so far precluded detailed crystal structure determinations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Hettich, R., Jin, C., Britt, P., Hauffler, R., and Compton, R., Fullerenes, Santa Barbara; 1993, p. 197; C. Jin, R. Hettich, R. Compton, J. Blencoe, and T. Burch, J. Phys. Chem. (in press).Google Scholar
(2) Malhotra, R. et al. , Proc. of the Electrochemical Society (New Orleans; Oct. 1994).Google Scholar
(3) Haufler, R. E. et al. , J. Phys. Chem. 94, 8634 (1990).Google Scholar
(4) Rüchardt, C., Gerst, M., Nölke, M., Angew. Chem. 104 1516 (1992).Google Scholar
(5) Gerst, M. and Rüchardt, C., Chem. Ber. 1993 (in press); (also see Fullerenes, Santa Barbara; 1993, p. 197).Google Scholar
(6) Henderson, C. C. and Cahill, P. A., Science 259 1885 (1993).Google Scholar
(7) Ballenweg, S., Gleiter, R., Kratschmer, W. and Mominger, G. (Fullerenes, Santa Barbara; 1993, p. 206).Google Scholar
(8) Avent, A. G., Darwich, A. D., Heimbach, D. K., Kroto, H. W., Meidine, M. G., Parsons, J. P., Remars, C., Roers, R., Ohashi, O., Taylor, R., and Walton, D. R. M., J. Chem. Soc. Perkin Tran. II 15 (1994).Google Scholar
(9) Becker, L., Evans, T. P., and Bada, J. L., J. Org. Chem. 58 7630 (1993).Google Scholar
(10) Welch, C. J. and Pirkle, W. H., J. Chromatog. 609, 89 (1992).Google Scholar
(11) The nomenclature used is that of Taylor, R., J. Chem. Soc Perkin Trans 2 813 (1993), Figure 2 (b).Google Scholar
(12) Henderson, C. C. and Cahill, P. A., Chem. Phys. Lett. 198 570 (1992).Google Scholar
(13) Henderson, C. C., Rohifing, C. M., Assink, R. A., and Cahill, P. A., presented to the American Chemical Society, Aug. 1993; Angew Chem. (in press).Google Scholar
(14) Henderson, C. C., Rohlfing, C. M., Gillen, K.T., and Cahill, P. A., Science (in press)Google Scholar