Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-13T16:07:25.169Z Has data issue: false hasContentIssue false

Strain Balanced InGaAs/GaAsP Multiple Quantum Well Modulators at 1.06 µm

Published online by Cambridge University Press:  15 February 2011

J.E. Cunningham*
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ. 07733
Get access

Extract

We review growth and optical properties of strain balanced, InGaAs/GaAsP Multiple Quantum Well structures on GaAs in order to make defect free, 1.06 µm modulators. Here, we implement strain balancing near the elastic limit on a length scale of strong size quantization so as to open up a special class of semiconductors materials. In this system we find the in-plane electron mass is strain-enhanced by 30 %. This preserves both excitonic binding energy and excitonic oscillator strength. Consequently, quantum well absorption at 1.06 pan can be nearly comparable to that of a GaAs qw. Also, strain balanced materials show an improved capacity over 850 nm MQW to optically modulate light signals through the Quantum Confined Stark Effect. This is attributed to a light -heavy hole splitting of 140 meV that is caused by a large component of shear strain in these systems. Growth of strain balanced materials is challenging because the strain energy can be comparable to the surface energy that bonds atoms to the crystal. In order to accurately predict the critical layer thicknesses for strain relief as well as the reorganized surface topology, we develop a 2D-3D growth mode model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bedair, M., Katsuyama, T., Timmons, M., and Tischler, M. A., Electro Device Lett. EDL–5, 45 (1984).Google Scholar
2. Cunningham, J. E., Goossen, K. W., Williams, M. and Jan, W. Y., Appl. Phys. Lett. 60 727 (1992).Google Scholar
3. Cunningham, E., Goossen, K. W., Williams, M., and Jan, W., J. Vac. Sci. Technol. BGoogle Scholar
4. 949(1992).Google Scholar
5. Goossen, K. W., Cunningham, J. E., and Jan, W. Y., Photonic Technol. Lett. 5, 1392 (1993).Google Scholar
6. Goossen, W., Cunningham, J. E., Jan, W. Y., Electronic Letts. 19, 1833 (1992).Google Scholar
7. Chiu, T. H., Cunningham, J. E., Woodward, T. K., Goossen, K. W., Sixer, T., 62 340 (1993).Google Scholar
8. Cunningham, J. E., Goossen, K. W., Williams, M. and Jan, W., J. Vac. Sci. Technol. B 10, 949 (1992).Google Scholar
9. Pathak, R. N., Goossen, K. W., Cunningham, J. E. and Jan, W., Photonic Technol. Lett., v. 6,12,1439,(1994).Google Scholar
10. Cunningham, J. E., Goossen, K. W., and Jan, W., J. Crys. Growth, 127, 184 (1993).Google Scholar
11. Berger, P. R., Chang, K., Bhattacharya, P., Singh, J., Bajaj, K. K., Appl. Phys. Lett., 53, 684, (1988).Google Scholar
12. Prince, G. L., Appl. Phys. Lett., 53, 1288 (1988).Google Scholar
13. Whaley, G. P. and Cohen, P. I., published in Proc. Mat. Res. Sco. 160, ed., Dodson, B. W., Schowalter, L. J., Cunningham, J. E. and Polak, F. H.,Pitts., Pa. (1990).Google Scholar
14. Mathews, J. W. and Blakeslee, A. E., J. Cryst. Growth, 27, 118 (1974).Google Scholar
15. Merwe, J. H. van der and Ball, C. A. B., in “Epitaxial Growth”, ed. Mathews, J. W., (North Holland, Amsterdam, 1983), Chap. 27.Google Scholar
16. Vawter, G.A. and Meyers, D. R., J. Appl. Phys. 65 4769, (1989). and L. C. Feldman, J. Bevk, B. A. Davidson, H. J. Grossmann, A. Ourmazd, T. P. Pearsall and M. Zinke-Alimang, Mat. Res. Soc. 102, 405 (1988).Google Scholar
17. Stranski, J.N. and Krastanov, L., Ber. Akad. Wiss. Wein 146 797 (1938).Google Scholar
18. Calm, J. W. and Hanneman, R.E., Surface Science 1, 387 (1964).Google Scholar
19. Osbom, G. C., J. Vac. Sci. Technol. A3, 826, (1985).Google Scholar
20. Lutgen, S., Albecht, T. F., Marschner, T., Stolz, W., and Golbel, E. O., Solid State Electr., v.37,905, (1994).Google Scholar
21. Moore, K. J., Duggan, G., Woodbridge, K. and Roberts, C., Phys. Rev. B. 41, 1090 (1990).Google Scholar
22. , Bastard, Mendez, E. E., Chang, L. L., Esaki, L., Phys. Rev. B 28 3241 (1982).Google Scholar
23. Goossen, K. W., Cunningham, J. E., Santos, M. B. and Jan, W. Y., Electronics Letts. 22 1985 (1993).Google Scholar