Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T19:26:27.608Z Has data issue: false hasContentIssue false

Stress Formation in Boron Nitride Films Prepared by Ion Beam Assisted Deposition

Published online by Cambridge University Press:  10 February 2011

B. Rauschenbach
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany, bernd.rauschenbach@physik.uni-augsburg.de
S. Sienz
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany, bernd.rauschenbach@physik.uni-augsburg.de
Get access

Abstract

The stress formation during N/Ar ion assisted deposition of boron nitride films on Si(001) substrates was measured in-situ by a very sensitive capacity technique in dependence on the ion energy, temperature during deposition and the ion to atom arrival rate.

The stress evolution in dependence on the layer thickness is characterized by a high tensile stress in the initial stage of the film growth, followed by a transition from the tensile to the compressive stress state, a strong increase of the compressive stress with the film thickness. A simultaneous UV-light irradiation during the deposition process leads to a reduction of the compressive stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mirkarimi, I. P. B., McCarty, K. F., and Medlin, D. L., Mater. Sci. Engng. R 21, 47(1997).Google Scholar
2. McKenzie, D. R., McFall, W. D., Sainty, W. G., Davies, C. A., and Collins, R. E., Diamond Relat. Mater. 2, 970(1993).Google Scholar
3. Davis, C. A., Thin Solid Films 226, 30(1993).Google Scholar
4. Lifshitz, Y., Kasi, S. R., Rabalais, J. W., and Eckstein, W., Phys. Rev. B 41, 10468(1990).Google Scholar
5. Robertson, J., Daiamond Relat. Mater. 5, 519(1996).Google Scholar
6. Cardinale, G. F., Howitt, D. G., McCarty, K. F., Medlin, D. L., Mirkarimi, P. B., and Moody, N. R., Diamond Relat. Mater. 5, 1295(1996).Google Scholar
7. Zeitler, M., Sienz, S., Neumann, H., Zeuner, M., Gerlach, J. W., and Rauschenbach, B., Nucl. Instr. Meth. B 139, 327(1998).Google Scholar
8. Zeitler, M., Sienz, S., and Rauschenbach, B., J. Vac. Sci. Technol. A 17, 597(1999).Google Scholar
9. Gerlach, J. W., Kraus, T., Sienz, S., Moske, M., Zeitler, M., and Rauschenbach, B., Surf. Coating Technol. 103/104, 281 (1998).Google Scholar
10. Stoney, G. G., Proc. Roy. Soc. (London), Ser. A 32, 172(1909).Google Scholar
11. Dworschak, W., Jung, K., and Ehrhardt, H., Thin Solid Films 254, 65(1995).Google Scholar
12. Berman, R. and Simon, F., Z. Elektrochem. 59, 333(1953).Google Scholar
13. Ye, J., Rothhaar, U. and Oechsner, H., Surf. Coating Technol. 105, 159(1998).Google Scholar
14. Mirkarimi, P. B., McCarty, K. F., Medlin, D. L., Wolfer, W. G., Friedman, T. A., Klaus, E. J., Cardinale, G. F., and Howitt, D. G., J. Mater. Res. 9, 2924(1994).Google Scholar
15. Ullmann, J., Kellock, A. J., and Baglin, J. E. E., Thin Solid Films 341, 238(1999).Google Scholar
16. Zeitler, M., gerlach, J. W., Kraus, T., and Rauschenbach, B., Appl. Phys. Lett. 70, 1254(1997).Google Scholar
17. Wengenmair, H., Gerlach, J. W., Preckwinkel, U., Stritzker, B., and Rauschenbach, B., Appl. Surf. Sci. 99, 313(1996).Google Scholar