Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-02T19:18:59.765Z Has data issue: false hasContentIssue false

Structural and Magnetic Properties of Untwinned Yba2Cu3O6+x Single Crystals

Published online by Cambridge University Press:  28 February 2011

Debra L. Kaiser
Affiliation:
National Institute of Standards and Technology, Materials Science and Engineering Laboratory, Gaithersburg, MD 20899
Frank W. Gayle
Affiliation:
National Institute of Standards and Technology, Materials Science and Engineering Laboratory, Gaithersburg, MD 20899
Lydon J. Swartzendruber
Affiliation:
National Institute of Standards and Technology, Materials Science and Engineering Laboratory, Gaithersburg, MD 20899
Winnie Wong-Ng
Affiliation:
National Institute of Standards and Technology, Materials Science and Engineering Laboratory, Gaithersburg, MD 20899
Steven F. Watkins
Affiliation:
Louisiana State University, Dept. of Chemistry, Baton Rouge, LA 70803
Frank R. Fronczek
Affiliation:
Louisiana State University, Dept. of Chemistry, Baton Rouge, LA 70803
Get access

Abstract

We have conducted structural and magnetic investigations on thermomechanically-detwinned YBa2Cu3O6+x single crystals. Single crystal x-ray diffraction studies on a fully untwinned crystal with a superconducting onset temperature of 54 K have revealed that oxygen atoms in the basal plane are offset from the crystallographic mirror plane in the a direction, leading to “zig-zag” Cu-O chains. Magnetic measurements on untwinned and twinned crystals at 77 K indicate low levels of flux pinning in both crystals, with a slightly larger amount of pinning in the twinned crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kaiser, D.L., Gayle, F.W., Roth, R.S., and Swartzendruber, L.J., J. Mater. Res. 4, 745 (1989).Google Scholar
2 Cava, R.J., Batlogg, B., Chen, C.H., Rietman, E.A., Zahurak, S.M., and Werder, D., Phys. Rev. B 36, 5719 (1987).Google Scholar
3 Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Kleefisch, M.S., Phys. Rev. B 36, 3608 (1987).Google Scholar
4 Schmid, H., Burkhardt, E., Sun, B.N., and Rivera, J.-P., Physica C 157, 555 (1989).Google Scholar
5 Giapintzakis, J., Ginzberg, D.M., and Han, P.-D., submitted to J. Low Temp. Phys.Google Scholar
6 Wong-Ng, W., Gayle, F.W., Kaiser, D.L., Watkins, S.F., and Fronczek, F.R., accepted for publication, Phys. Rev. B.Google Scholar
7 Beech, F., Miraglia, S., Santoro, A., and Roth, R.S., Phys Rev. B 35, 8778 (1987).Google Scholar
8 Kaiser, D.L., Holtzberg, F., Scott, B.A., and McGuire, T.R., Appl. Phys. Lett., 51, 1040 (1987); D.L. Kaiser, F. Holtzberg, M.F. Chisholm, and T.K. Worthington, J. Cryst. Growth 85. 593 (1987).Google Scholar
9 Francois, M., Junod, A., Yvon, K., Hewat, A.W., Capponi, J.J., Strobel, P., Marezio, M., and Fischer, P., Solid State Comm. 66, 1117 (1988).Google Scholar
10 Rice, J.P., Pazol, B.G., Ginsburg, D.M., Moran, T.J., and Weissman, M.B., J. Low Temp. Phys. 72, 345 (1988).Google Scholar
11 Gyorgy, E.M., van Dover, R.B., Jackson, K.A., Schneemeyer, L.F., and Waszczak, J.V., Appl. Phys. Lett. 55, 283 (1989).Google Scholar
12 Swartzendruber, L.J., Roitburd, A., Kaiser, D.L., Gayle, F.W., and Bennett, L.H., submitted to Phys. Rev. Lett.Google Scholar