Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-21T16:26:14.193Z Has data issue: false hasContentIssue false

Structural and Optical Properties of Thin Metal-Oxide Films (ZnO and SnOx) Deposited on Glass and Silicon Substrates

Published online by Cambridge University Press:  01 February 2011

Serekbol Zh. Tokmoldin
Affiliation:
Institute of Physics and Technology, Almaty, 050032, Kazakstan
Bulat N. Mukashev
Affiliation:
Institute of Physics and Technology, Almaty, 050032, Kazakstan
Nurzhan B. Beisenkhanov
Affiliation:
Institute of Physics and Technology, Almaty, 050032, Kazakstan
Azamat B. Aimagambetov
Affiliation:
Institute of Physics and Technology, Almaty, 050032, Kazakstan
Irina V. Ovcharenko
Affiliation:
Institute of Physics and Technology, Almaty, 050032, Kazakstan
Get access

Abstract

Thin ZnO films deposited on silicon and glass substrates by DC reactive magnetron sputtering were exposed to a sequence of thermal treatments at 400°C in vacuum, then in air, then in vacuum again. Photoluminescence studies of these ZnO films exited at 325 nm by He-Cd laser revealed an appearance of a photoluminescence band around 380 nm upon the annealing in vacuum.

Thin SnOx films were deposited on glass substrates by ion-beam sputtering using pure oxygen as a working gas. X-ray diffraction analysis showed that as-deposited films consist of textured SnO2- and Sn2O3-crystallites which are transformed into polycrystalline SnO2 phase at a moderate temperature near 200°C. It is shown that the growth of the SnO2 crystallite size upon the annealing is mainly due to the disappearance of an amorphous phase at 400°C and coalescence of crystallites at 600°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Georgobiani, A.N., Gruzintsev, A.N., Volkov, V.T. and Vorob'ev, M.O., Semiconductors, 36 (3) (2002) 265.Google Scholar
2 Tüzemen, S., Doan, Seydi, Ates, Aytunc, Yildirim, M., Xiong, Gang, Wilkinson, J. and Williams, R.T., Phys.Stat.Sol.(a) 195 (2003) 165.Google Scholar
3 Rusu, D.I. and Rusu, I.I., Analele stintifice ale universitattii, “Al.I.Cuza” IASI Tomul XLVXLV1, s.Fizica Starii Condensate (1999-2000) 118.Google Scholar
4 Mukashev, B.N., Tokmoldin, S.Zh., Beisenkhanov, N.B., Kikkarin, S.M., Ovcharenko, I.V., Glazman, V.B., Aimagambetov, A.B., Dmitrieva, E.A. and Veremenithev, B.M., Mater.Sci.Eng.B., (2005) in press.Google Scholar
5 Butkhusi, T.V., Chelidze, T.G., Georgobiani, A.N., Jashiashvili, D.L., Khulordava, T.G. and Tsekvava, B.E., Physical Review B, 58(16) (1998) 10692.Google Scholar
6 Gopel, W., Sensors and Actuators B, 16 (1989) 167.Google Scholar
7 Xu, Chaonan, Tamaki, Jun, Miura, Norio and Yamazoe, Noboru, Sensors and Actuators B, 3 (1991) 147.Google Scholar
8 Karapatnitski, I.A., Mit', K.A., Mukhamedshina, D.M. and Beisenkhanov, N.B., Surface and Coatings Technology, 151-152 (2002) 76.Google Scholar
9 Safonova, O., Bezverkhy, I., Fabritchnyi, P., Rumyantseva, M., Gaskov, A., J.Mater.Chem., 12 (2002) 1174.Google Scholar
10 Safonova, O.V., Rumyantseva, M.N., Ryabova, L.L., Labeau, M., Delablouglise, G. and Gaskov, A.M., Mater.Sci.Eng.B, 85 (2001) 43.Google Scholar
11 Abdullin, Kh.A., Aimagambetov, A.B., Beisenkhanov, N.B., Issova, A.T., Mukashev, B.N., Tokmoldin, S.Zh.// Mater.Sci.Eng.B. 109. 2004. 1-3. 241.Google Scholar
12ATaylor, .. X-Ray Metallography. Pittsburgh. 1961. PA.Google Scholar