Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-02T07:22:28.068Z Has data issue: false hasContentIssue false

Structural Defects in Heteroepitaxial and Homoepitaxial GaN

Published online by Cambridge University Press:  21 February 2011

Zuzanna Liliental-Weber
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
S. Ruvimov
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
CH. Kisielowski
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Y. Chen
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J. Washburn
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
N. Newman
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
A. Gassmann
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
X. Liu
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
L. Schloss
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
E.R. Weber
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
I. Grzegory
Affiliation:
High Pressure Research Center "Unipress" Polish Academy of Sciences, Warsaw, Poland
M. Bockowski
Affiliation:
High Pressure Research Center "Unipress" Polish Academy of Sciences, Warsaw, Poland
J. Jun
Affiliation:
High Pressure Research Center "Unipress" Polish Academy of Sciences, Warsaw, Poland
T. Suski
Affiliation:
High Pressure Research Center "Unipress" Polish Academy of Sciences, Warsaw, Poland
K. Pakula
Affiliation:
High Pressure Research Center "Unipress" Polish Academy of Sciences, Warsaw, Poland
J. Baranowski
Affiliation:
High Pressure Research Center "Unipress" Polish Academy of Sciences, Warsaw, Poland
S. Porowski
Affiliation:
High Pressure Research Center "Unipress" Polish Academy of Sciences, Warsaw, Poland
H. Amano
Affiliation:
Meijo University, Nagoya, Japan
I. Akasaki
Affiliation:
Meijo University, Nagoya, Japan
Get access

Abstract

The microstructure and characteristic defects of heteroepitaxial GaN films grown on sapphire using molecular beam epitaxy (MBE) and metal-organic-chemical-vapor-deposition (MOCVD) methods and of homoepitaxial GaN grown on bulk substrates are described based on transmission electron microscopy (TEM), x-ray diffraction, and cathodoluminescence (CL) studies. The difference in arrangement of dislocations along grain boundaries and die influence of buffer layers on the quality of epitaxial films is described. The structural quality of GaN epilayers is compared to diat of bulk GaN crystals grown from dilute solution of atomic nitrogen in liquid gallium. The full width at half maximum (FWHM) of the x-ray rocking curves for these crystals was in the range of 20–30 arc sec, whereas for the heteroepitaxially grown GaN the FWHM was in the range of 5–20 arc min. Homoepitaxial MBE grown films had FWHMs of about 40 arc sec. The best film quality was obtained for homoepitaxial films grown using MOCVD; these samples were almost free from extended defects. For the bulk GaN crystals a substantial difference in crystal perfection was observed for the opposite sides of the plates shaped normal to the c direction. On one side the surface was almost atomically flat, and the underlying material was free of any extended structural defects, while the other side was rough, with a high density of planar defects. This difference was related to the polarity of the crystal. A large difference in crystal stoichiometry was also observed within different sublayers of the crystals. Based on convergent beam electron diffraction and cathodoluminescence, it is proposed that GaN antisite defects are related to the yellow luminescence observed in these crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1 Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett., 64, 1687 (1994).Google Scholar
2 Lin, M.E., Xue, G., Zhou, G.L., Green, J.E., and Morkoc, H., Appl. Phys. Lett., 63, 932 (1993).Google Scholar
3 Wang, C. and Davis, R.F., Appl.Phys. Lett. 63, 990 (1993).Google Scholar
4 Newman, N., Ross, J. and Rubin, M., Appl. Phys. Lett. 62, 1242 (1993).Google Scholar
5 Mizuta, M., Fujieta, S., Matsumoto, Y., and Kawamura, T., Jap. J. Appl. Phys. 25, L945 (1986).Google Scholar
6 Lester, S.D., Ponce, F.A., Craford, M.G., and a, Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
7 Porowski, S., Grzegory, I., and Jun, J. in "High Pressur Chemical Synthesis" edts. Jurczak, J. and Baranowski, B., Elsevier Science Publishers, B.V. (1989) p. 21.Google Scholar
8 Porowski, S. and Grzegory, I., in "Properties of Group III Nitrides" ed. Edgar, James H., EMIS Data-reviews Series No. 11 (1994), p. 76.Google Scholar
9 Liliental-Weber, Z., Sohn, H., Newman, N., and. Washburn, J., J. Vac.Sci.Technol. B 13 (4), 1578 (1995).Google Scholar
10 Okumura, H., J. Cryst. Growth 136, 361 (1994).Google Scholar
11 Hull, D. and Bacon, D.J., “Introduction to Dislocations” International Series on Materials Science and technology, vol. 37, Pergamon International Library, Publisher: R. Maxwell, M.C. (1985).Google Scholar
12 Lin, X.W., Behar, M., Maltez, R., Swider, W., Liliental-Weber, Z., and Washburn, J., Appl. Phys. Lett., 67, 2699 (1995).Google Scholar
13 Newman, N., Fu, T.C., Liu, X., Liliental-Weber, Z., Rubin, M., Chan, J.S., Jones, E., Ross, J.T., Tidswell, I., Yu, K.M., Cheung, N., and Weber, E.R., Mat. Res. Symp. Proc. 339, 483 (1994).Google Scholar
14 Jones, E., Newman, N., Gassmann, A., Anders, A., Schloss, L., Liu, X., Chan, J., Kisielowski, Ch., Rubin, M., Weber, E.R., and Cheung, N.-These ProceedingsGoogle Scholar
15 Qian, W., Skowronski, M., Doverspike, K., Rowland, L.B., and Gaskill, D.K., J. Crystall Growth 151, 396 (1995).Google Scholar
16 Qian, W., Roher, G.S., Skowronski, M., Doverspike, K., Rowland, L.B., and Gaskill, D.K., Appl. Phys. Lett. 67, 2284 (1995).Google Scholar
17 Leszczynski, M., Suski, T., Perlin, P., Grzegory, I., Bockowski, M., Jun, J., Porowski, S., and Major, J., J. Phys. D. Appl. Phys. 28, A 149 (1995).Google Scholar
18 Liliental-Weber, Z., Kisielowski, C., Chen, Y. and Washburn, J., Grzegory, I., Bockowski, M., Jun, J., and Porowski, S., Appl. Phys. Lett., in press.Google Scholar
19 Liliental-Weber, Z., Kisielowski, C., Liu, X., Schloss, L., Washburn, J., Weber, E.R., Grzegory, I., Bockowski, M., Jun, J., Suski, T., and Porowski, S., Solid State Electonics, in press.Google Scholar
20 Liliental-Weber, Z., Kisielowski, C., Liu, X., Schloss, L., Washburn, J., Weber, E.R., Grzegory, I., Bockowski, M., Jun, J., Suski, T., Baranowski, J., Porowski, S., Bernholc, J., and Boguslawski, P.-to be published.Google Scholar
21 Weber, E.R., Ennen, H., Kaufmann, U., Windscheif, J., Schneider, J. and Wosinski, T., J. Appl. Phys. 53, 6140 (1982).Google Scholar
22 Perlin, P., Suski, T., Teisseyre, H., Leszczynski, M., Grzegory, I., Jun, J., Porowski, S., Boguslawski, P., Bernholc, J., Chervin, J.C., Polian, A., and Moustakas, T.D., Phys. Rev. Lett. 75, 296 (1995).Google Scholar
23 Gassmann, A., Suski, T., Liliental-Weber, Z., Newman, N., Helawa, H., Grzegory, I., Bockowski, M., Jun, J., and Porowski, S., to be published.Google Scholar
24 Pakula, K., Wysmolek, A., Korona, K.P., Baranowski, J.M., Stepniewski, R., Grzegory, I., Bockowski, M., Jun, J., Krukowski, S., Wroblewski, M. and Porowski, S., Proc. of NATO Advanced Research Workshop HEAD 95, Smolenice, Slovakia, (1995), in press.Google Scholar