Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-12T08:28:31.687Z Has data issue: false hasContentIssue false

Structural Models of Negatively Curved Graphitic Carbon

Published online by Cambridge University Press:  25 February 2011

S. J. Townsend
Affiliation:
Cornell University, Department of Physics, Ithaca, New York 14853
T. J. Lenosky
Affiliation:
Cornell University, Department of Physics, Ithaca, New York 14853
D. A. Muller
Affiliation:
Cornell University, Department of Physics, Ithaca, New York 14853
C. S. Nichols
Affiliation:
Cornell University, Department of Materials Science and Engineering, Ithaca, New York 14853
V. Elser
Affiliation:
Cornell University, Department of Physics, Ithaca, New York 14853
Get access

Abstract

We have developed an automatic computational method for generating graphitic carbon structures. We propose models for crystalline and amorphous forms of carbon consisting of a single negatively curved graphitic sheet forming an extended structure. Stability and elastic properties are computed using an energy estimate fit to local density approximation(LDA) calculations. These forms of carbon are found to be more stable than C60. The radial distribution function for the random structures closely matches that of films of amorphous carbon grown on NaCI substrates from sublimated graphite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Krätschmer, W. et al. , Nature (London) 347, 354 (1990).CrossRefGoogle Scholar
[2] lijima, S., Nature (London) 354, 56 (1991).Google Scholar
[3] Vanderbilt, D. and Tersoff, J., Phys. Rev. Lett. 68, 511 (1992).CrossRefGoogle Scholar
[4] Mackay, A. L. and Terrones, H., Nature (London) 355, 762 (1991).CrossRefGoogle Scholar
[5] Lenosky, T. et al. , Nature (London) 355, 333 (1992).CrossRefGoogle Scholar
[6] Schwarz, H. A., Gesammelte Mathematische Abhandlugen (Springer, Berlin, 1890).CrossRefGoogle Scholar
[7] For an introduction to these surfaces, see Schoen, A. H., NASA Technical Note, (NASA, TN D-5541, 1970).Google Scholar
[8] Townsend, S. J., Lenosky, T. J., Muller, D. A., Nichols, C. S., and Elser, V. (submitted for publication).Google Scholar
[9] Zhang, B. L., Xu, C. H., Wang, C. Z., Chan, C. T., and Ho, K. M. (to be published). B. L. Zhang, C. Z. Wang, and K. M. Ho (to be published).Google Scholar
[10] Chan, C. T., Zhang, B. L., Wang, C. Z., and Ho, K. M (to be published).Google Scholar
[11] Phillips, R., Lenosky, T., Drabold, D., Sankey, O., and Adams, C. (to be published).Google Scholar
[12] Fischer, J. E. et al. , Science 252, 1288 (1991).CrossRefGoogle Scholar
[13] Schulman, J. M. and Disch, R. L., J. Cherm. Soc. Chem. Conimun. 6, 411 (1991).CrossRefGoogle Scholar
[14] McKenzie, D. R. et al. , Thin Solid Films, 206 198(1991). D. I. McKenzie, D. A. Muller, B. A. Pailthorpe, Phys. Rev. Lett. 67 773(1991).CrossRefGoogle Scholar
[15] Robertson, J., Adv. Phys. 35, 317 (1986).CrossRefGoogle Scholar
[16] Green, D. C., McKenzie, D. R. and Lukins, P. B., in Properties and Characterization of Amorphous Carbon Films, edited by Pouch, J. J. and Alterovitz, S. A. (Trans Tech, Nedermannsdorf, 1990), Vol. 103.Google Scholar
[17] Li, F. and Lannin, J. S., Phys. Rev. Lett. 65 1905(1990).CrossRefGoogle Scholar
[18] Galli, G., Martin, R. M., Car, R., and Parrinello, M., Phys. Rev. Lett. 62 555(1989).CrossRefGoogle Scholar
[19] Jenkins, G., Kawamura, K., Polymeric Carbons Carbon Fibre, Glass and Char, (Cambridge Univeristy Press, 1976).Google Scholar