Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-22T18:21:26.669Z Has data issue: false hasContentIssue false

Structural Studies of Microcrystalline Silicon Films Produced by Sputtering

Published online by Cambridge University Press:  21 February 2011

T. D. Moustakas
Affiliation:
Exxon Research and Engineering Co. Clinton Township, Annandale, N.J. 08801
D. A. Weitz
Affiliation:
Exxon Research and Engineering Co. Clinton Township, Annandale, N.J. 08801
E. B. Prestridge
Affiliation:
Exxon Research and Engineering Co. Clinton Township, Annandale, N.J. 08801
R. Friedman
Affiliation:
Exxon Research and Engineering Co. Clinton Township, Annandale, N.J. 08801
Get access

Abstract

A number of microcrystalline silicon films have been deposited by RF sputtering and their structure was investigated by Raman spectroscopy, X-ray scattering, SEM, TEM and IR spectroscopy. The interpretation of these results suggests that the film growth proceeds initially via amorphous island formation and that the degree of crystallization of the final film depends on subsequent solid phase crystallization during the time of growth. The size and the preferred orientation of the crystallites correlates with the columnar growth habit of the films while the rest of the amorphous matrix is shown to exhibit a considerable degree of order.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iqbal, Z., Webb, A. P. and Veprek, S., Appl. Phys. Lett. 36, 163 (1980).Google Scholar
2. Veprek, S., Iqbal, Z., Oswald, H. R., Sarott, F. A., Wagner, J. J. and Webb, A. P., Solid State Commun. 39, 504 (1981).Google Scholar
3. Richter, H. and Ley, L., J. of Appl. Phys. 52, 7281 (1981).Google Scholar
4. Matsuda, A., J. Non-Crystal. Solids 59–60, 767 (1983); A. Matsuda, T. Yoshida, S. Yamasaki and K. Tanaka, Jpn. J. of Appl. Phys. 20, L439 (1981).Google Scholar
5. Hamasaki, T., Kurata, H., Hirose, M., Osaka, Y., Jpn. J. of Appl. Phys. 20, L84 (1981).Google Scholar
6. Spear, W. E., Willeke, G., LeComber, P. G. and Fitzgerald, A. G., J. De Phys. Cologue C4, Suppl. No 10 Tome 42, C4-257 (1981).Google Scholar
7. Veprek, S., Iqbal, Z. and Sarott, F. A., Philos. Mag. B 45, 137 (1982).CrossRefGoogle Scholar
8. Imara, T., Mogi, K., Hiraki, A., Nakoshimer, S. and Mitsuishi, A., Solid State Comm. 40, 161 (1981).Google Scholar
9. Ishida, H., Noder, M. and Shimizu, H. Jpn. J. of Appl. Phys. 22, L73 (1983).Google Scholar
10. Tsu, R., Gonzalez-Hernandez, J., Chao, S. S., Lee, S. C. and Tanaka, K. Appl. Phys. Lett. 40, 534 (1982).Google Scholar
11. Iqbal, Z. and Veprek, S., J. Phys. C: Solid State Phys. 15, 377 (1982).Google Scholar
12. Moustakas, T. D. (to be published).Google Scholar
13. Moustakas, T. D., Solar Energy Materials, 8, 187 (1982).Google Scholar
14. Wagner, H., Butz, R., Backes, U., Bruchmann, D., Solid State Commun. 38, 1155 (1981).Google Scholar
15. Tsu, R., Izu, M., Ovshinsky, S. R. and Pollak, F. H., Solid State Commun. 36, 817 (1980).Google Scholar
16. Proust, N., Bisaro, R., Magarino, J., Kaplan, D. and Zellama, K., Proc. of the Symposium on Material and New Processing Technologies for Photovoltaics, Vol.83–11, p. 291. Amick, J. A., Kapur, V. K. and J. Dietl Eds. The Electro-chmical Society, Penningtonm, N.J. (1983).Google Scholar
17. Vossen, J. L. and Cuomo, J. J., In “Thin Film Processes” (Vossen, J. L. and Kern, W. Eds.) Chapt. 2 Academic Press, New York, 1978.Google Scholar
18. Moustakas, T. D., In “Semiconductors and Semimetals”, Volume 21A, (Pankove, J. I. Ed.), Chapter 4, Academic Press, New York, 1984.Google Scholar
19. Kampas, Frank J., In “Semiconductors and Semimetals”, Volume 21A, (Pankove, J. I. Ed.), Chapter 8, Academic Press, New York, 1984.Google Scholar