Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-31T15:17:07.539Z Has data issue: false hasContentIssue false

Structure and Novel Electrical Effects in A-Si:H Based Multilayers Containing Discontinuous Metal Sublayers

Published online by Cambridge University Press:  15 February 2011

A.N. Panckow
Affiliation:
Institut für Experimentelle Physik der Otto-von-Guericke-Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany
T.P. DrÜsedau
Affiliation:
Institut für Experimentelle Physik der Otto-von-Guericke-Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany
F. Klabunde
Affiliation:
Institut für Experimentelle Physik der Otto-von-Guericke-Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany
B. SchrÖder
Affiliation:
Fachbereich Physik und Forschungsschwerpunkt Materialwissenschaften der Universität Kaiserslautern, PF 3049, 67663 Kaiserslautern, Germany
Get access

Abstract

Multilayer systems (MLS) were prepared by alternating deposition of hydrogenated amorphous silicon (a-Si:H) and transition metal (Mo,Ti,V) sublayers. The thickness of the a-Si:H sublayers deposited by either dc-magnetron sputtering or rf-glow discharge deposition is in the range from 65 nm to 85 nm. The nanodisperse structure of the metal sublayers with a nominal thickness below 4 nm was verified by transmission electron microscopy, scanning force microscopy and spectroscopic ellipsometry. The discontinuous metal sublayers were formed by chains of metal clusters. The appearance of novel electrical phenomena was observed. These are a reversible switching effect in conduction and giant current fluctuations. The validity of the T−1/2 -law for the temperature dependent conductivity was confirmed. In this study explanations for some of these effects are given considering the structural peculiarities of the nanodisperse multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Naruse, Y. and Hatayama, T., IEEE Trans. Nucl. Science 36, 1347 (1989).Google Scholar
2. Panckow, A.N., BlUsing, J., and Driisedau, T.P., J. Non-Cryst. Solids 164–166, 845 (1993).Google Scholar
3. Holloway, K. and Sinclair, R. J. Appl. Phys. 61, 1359 (1987).Google Scholar
4. Driisedau, T.P. and Panckow, A.N., Phil. Mag. Lett. 69, 333 (1994).Google Scholar
5. Adkins, C.J., J. Phys.: Condens. Matter 1, 1253 (1989).Google Scholar
6. Mostefa, M. and Olivier, G., Physica B 142, 80 (1986).Google Scholar
7. Vinzelberg, H., Heinrich, A., Gladun, C. and Elefant, D., Phil. Mag. B 65, 651 (1992).Google Scholar
8. Yakimov, A.I., Stepina, N.P. and Dvurechenskii, A.V., Phys. Lett. A 179, 131 (1993).Google Scholar
9. Laurent, C. and Kay, E., Z. Phys. D. 12, 465 (1989).Google Scholar
10. Hajto, J., Owen, A.E., Snell, A.J., LeComber, P.G. and Rose, M.J., Phil. Mag. B 63, 349 (1991).Google Scholar