Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-29T16:23:24.646Z Has data issue: false hasContentIssue false

A structure observation of GaAs micro crystal/Se-terminated GaAlAs interface for the quantum well box structure

Published online by Cambridge University Press:  22 February 2011

Toyohiro Chikyow
Affiliation:
National Research Institutefor Metals, Tsukuba Laboratories, 1-2-1 Sengen Tsukuba-shi ibaraki 305, Japan
Michihisa Lijima
Affiliation:
Tokai University, Department of Electro-optics, 1117 Kitakaname, Hiratsuka-shi Kanagawa 259-12, Japan
Nobuyuki Koguchi
Affiliation:
National Research Institutefor Metals, Tsukuba Laboratories, 1-2-1 Sengen Tsukuba-shi ibaraki 305, Japan
Get access

Abstract

A selective growth of GaAs micro crystals was demonstrated on a Se-terminated GaAIAs surface by sequential supplies of Ga and As molecules for the quantum well box structure. After the growth, the surface consisted GaAs micro crystals with (111) facets and some Se clusters. The cross sectional investigations by the high resolution electron microscope revealed an epitaxial growth of GaAs micro crystals on the surface and a mixture of Ga2Se3 and A12Se3 layer formation at the interface of GaAs/Se-terminated GaAIAs. The selenidation process seems to be a reaction limited one. The Se cluster segregation could be avoided by selenidation in As molecule atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Temkin, H., Dolan, G.J., Panish, M.B. and Chu, N.G., Appl.Phys.Lett.,50, 413(1987).Google Scholar
2. Arakawa, Y. and Sakaki, H., Appl.Phys.Lett.,40, 939 (1982).Google Scholar
3. Fukui, T., Ando, S., Tokura, Y. and Toriyama, T., Appl.Phys.Lett.,58, 2018 (1991).Google Scholar
4. Chikyow, T. and Koguchi, N., JpnJ.Appl.Phys.,29, L2093 (1990).Google Scholar
5. Chikyow, T. and Koguchi, N., Surface Science 267, 241 (1992).Google Scholar
6. Koguchi, N., Takahashi, S. and Chikyow, T., J.Crystal Growth, 111, 688 (1991).Google Scholar
7. Ishige, K. and Koguchi, N., 10th Record of Alloy Semiconductor Physics and Electronics Symposium, 255 (1991).Google Scholar
8. Takahashi, S. and Koguchi, N., 9th Record of Alloy Semiconductor Physics and Electronics Symposium, 111 (1990).Google Scholar
9. Chikyow, T. and Koguchi, N., AppI.Phys.Lett.,61,2431 (1992).Google Scholar
10. Chikyow, T. and Koguchi, N., (to be published in the proceeding of Microcrystalline Semiconductor-Materials Science and Devices, MRS Fall Meeting 1992).Google Scholar
11. , Takatani, Kikawa, T. and Nakazawa, M., Jpn.J.Appl.Phys.,30, 3763 (1991).Google Scholar
12. Ourmazd, A., Tsang, W.T., Rentschler, J.A. and Tayer, D.W., Appl.Phys.Lett., 20, 1417 (1987).Google Scholar
13. Killiaas, R., Proc.45th Annual EMSA meeting, p66 (1985). (The program MacTempas was provided to S. lkeda, NRIM from Total Resolution ).Google Scholar
14. Neave, J.H., Joyce, B.A. and Dobson, P.J., Appl.Phys.,A34, 179 (1984).Google Scholar
15. Osaka, J., Inoue, N., Mada, Y., Yamada, K. and Wada, K., J.Crystal Growth 99, 120 (1990).Google Scholar
16. Ohno, T., Surface Science 111, 229 (1991).Google Scholar
17. Takatani, S., Nakano, A. Ogata, K. and Kikawa, T., JpnJ.Appl.Phys. 31, L458 (1992).Google Scholar
18. Kubaschewski, O., Metallurgical Thermochemistry, 5th ed.(Pergamon Press, New York, 1979).Google Scholar
19. Wagner, R.S. and Ellis, W.C., Appl.Phys.Lett.,4, 89 (1964).Takatani, T.Kikawa and M.NakazawaJpn.J.Appl.Phys.,30, 3763 (1991).Google Scholar