Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-02T07:44:24.551Z Has data issue: false hasContentIssue false

A Study of Parameters that Influence Growth and Stability of the (Bi1−xPbx)2Sr2Ca2Cu3Oy Phase

Published online by Cambridge University Press:  26 February 2011

J. S. Luo
Affiliation:
Argonne National Laboratory, Argonne, IL. 60439
N. Merchant
Affiliation:
Argonne National Laboratory, Argonne, IL. 60439
V. A. Maroni
Affiliation:
Argonne National Laboratory, Argonne, IL. 60439
D. M. Gruen
Affiliation:
Argonne National Laboratory, Argonne, IL. 60439
B. S. Tani
Affiliation:
Argonne National Laboratory, Argonne, IL. 60439
W. L. Carter
Affiliation:
American Superconductor Corporation, Watertown, MA 02172
G. N. Riley
Affiliation:
American Superconductor Corporation, Watertown, MA 02172
K.H. Sandhage
Affiliation:
American Superconductor Corporation, Watertown, MA 02172
Get access

Abstract

The growth and stability of the (Bi1-xPbx)2Sr2Ca2Cu3Oy (Bi-2223) phase contained in silver-sheathed wires has been investigated by a combination of x-ray diffraction, scanning electron microscopy, energy dispersive x-ray analysis, and transmission electron microscopy. Silver tubes loaded with Bi-2223 precursor powders were processed into filaments using established metallurgical techniques. The filaments were then heat-treated at selected temperatures (800 to 845°C) for a range of times (10 to 6000 min) in a 7.5% oxygen atmosphere. From these studies it has been possible to investigate the time-temperature-oxygen pressure domains wherein Bi2Sr2CaCu2O8 (Bi-2212) + second phases transform to Bi-2223. Fractional conversion (Bi-2212 --> Bi-2223) versus time data show good conformance to the kinetic model for a diffusion-controlled reaction at the interface between thin sheets and a fine powder or a fluid. Quenching experiments also reveal that the Bi-2223 phase is stable in a limited temperature interval between 810 and 830°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, K., Hikata, T., Mukai, H., Ueyama, M., Kato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T., IEEE Trans. Magn. 21, 1231 (1991).Google Scholar
2. Yamada, Y., Obst, B., and Flukiger, R., Supercond. Sci. Technol. 4, 165 (1991).Google Scholar
3. Roth, R. S., Rawn, C. J., Burton, B. P., and Beech, F., J. Res. NIST 95, 291 (1990).Google Scholar
4. Majewski, P., Hettich, B., Jaeger, H., and Schulze, K., Adv. Mater. 3, 67 (1991).Google Scholar
5. Luo, J. S., Faudot, F., Chevalier, J -P., Portier, R., and Michel, D., J. Solid State Chem. 89, 94 (1990).Google Scholar
6. Sandhage, K. H., Riley, G. N. Jr, and Carter, W. L, JOM 3, 21 (1991).Google Scholar
7. Merchant, N., Luo, J. S., Maroni, V. A., Gruen, D. M., Tani, B. S., Sinha, S., Sandhage, K. H., and Creven, C., (submitted to J. Mater. Res.).Google Scholar
8. Luo, J. S., Merchant, N., Maroni, V. A., Gruen, D. M., Tani, B. S., Carter, W. L., Riley, G. N. Jr, and Sandhage, K. H., (submitted to Appl. Phys. Lett.).Google Scholar
9. Hulbert, S. F., J. Br. Ceram. Soc. 6, 11 (1969).Google Scholar
10. Zhu, W. and Nicholson, P. S., J. Mater. Res. 71 38 (1992).Google Scholar