Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T12:37:38.075Z Has data issue: false hasContentIssue false

Study of the Ion-Acoustic Effect using Focused Ion Beams

Published online by Cambridge University Press:  03 September 2012

J. Teichert
Affiliation:
Institute of Ion Beam Physics and Materials Research, Research Center Rossendorf Inc., PO Box 510119, D-01314 Dresden, Germany, teichert@fz-rossendorf.de
L. Bischoff
Affiliation:
Institute of Ion Beam Physics and Materials Research, Research Center Rossendorf Inc., PO Box 510119, D-01314 Dresden, Germany, teichert@fz-rossendorf.de
B. Köhler
Affiliation:
Fraunhofer-Institute for Nondestructive Testing, Branch Lab Dresden, Krügerstraiße 22, D-01326 Dresden, Germany
Get access

Abstract

Acoustic waves induced by an intensity-modulated focused ion beam (FIB) have been measured. The experiments were performed with Ga+ ions of 35 keV at a current of 3 nA and variable chopping frequency up to 10 MHz. The acoustic signals were detected by means of a piezoelectric sensor with integrated pre-amplifier. In the paper the experimental setup and the results of first measurements are presented. Evidence for FIB induced acoustic waves has been found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Balk, L.J., Adv. Electron. Electron Phys. 71, 1 (1988).Google Scholar
2. Kessler, L.W. and Yuhas, D.E., Proc. IEEE 67, 526 (1979).Google Scholar
3. Wong, Y.H., Thomas, R.L., and Hawkins, G.F., Appl. Phys. Lett. 32, 538 (1978).Google Scholar
4. Sieger, G. E. and Lefevre, H.W., Appl. Phys. Lett. 44, 28 (1984).Google Scholar
5. Sieger, G. E. and Lefevre, H.W., Phys. Rev. A31, 3929 (1985).Google Scholar
6. Satkiewicz, F.G., Murphy, J.C., Aamodt, L.C., and Maclachlan, J.W., Rev. of Prog. on QNDE 5A, 455 (1986).Google Scholar
7. Satkiewicz, F.G., Murphy, J.C., Maclachlan, J.W., and Aamodt, L.C., Rev. of Prog. on QNDE 6A, 759 (1986).Google Scholar
8. Kimura, K., Nakanishi, K., Nishimura, A. and Mannami, M., Jpn. J. Appl. Phys. 24, L449 (1985).Google Scholar
9. Rose, D.N., Turner, H., and Legg, K.O., Can. J. Phys. 64, 284 (1986).Google Scholar
10. Deemer, B.C., Murphy, J.C., Claytor, T.N., and Tesmer, J.R., Rev. of Prog. on QNDE 11, 2147 (1992).Google Scholar
11. Deemer, B.C., Murphy, J.C., Claytor, T.N., Tesmer, J.R. and Spicer, J.B., Rev. of Prog. on QNDE 12, 995 (1993).Google Scholar
12. Deemer, B.C., PhD thesis, The Johns Hopkins University, 1996.Google Scholar
13. Teichert, J., Bischoff, L., and Köhler, B., Appl. Phys. Lett. 69, 1544 (1996).Google Scholar
14. Melngailis, J., J. Vac. Sci. Technol. B5, 469 (1987).Google Scholar
15. Orloff, J., Rev. Sci. Instrum. 64, 1105 (1993).Google Scholar
16. Rosencwaig, A., and Gersho, A., J. Appl. Phys. 47, 64 (1976).Google Scholar
17. Bischoff, L., Teichert, J., Hesse, E., Panknin, D., and Skorupa, W., J. Vac. Sci. Technol. B, 12, 3523 (1994).Google Scholar