Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T16:25:58.496Z Has data issue: false hasContentIssue false

Study of the Solid State Properties of an Organic Superconductor

Published online by Cambridge University Press:  25 February 2011

Raul Fainchtein
Affiliation:
Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723–6099
S. T. D'arcangelo
Affiliation:
Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723–6099
S. S. Yangt
Affiliation:
Chemistry Dept., Johns Hopkins University, Baltimore, MD 21218
D. O. Cowant
Affiliation:
Chemistry Dept., Johns Hopkins University, Baltimore, MD 21218
Get access

Abstract

We have synthesized cooper(I)di[bis(ethylenedithiolo)terathiafulvalene] bis(isothiocyanato), [(BEDT-TTF)2]+[Cu(NCS)2]using standard electrochemical methods. Single crystal samples of the compound were obtained and were found to have superconducting transition temperatures of 10.4 K, using DC conductivity measurements. [(BEDT-TTF)2+[Cu(NCS)2] shows a region between room temperature and 90 K which appears to be“semiconducting”

To characterize the structure of the samples we used Scanning Tunneling Microscopy (STM). STM supplied real-space images of the sample surface in accordance to its electronic structure. Ravy observed diffuse streaks between Bragg spots in his X-ray data of [(BEDT-TTF)2+[Cu(NCS)2], which he attributes to a stacking fault at every fourth repetition of the anion in the crystal structure [1]. STM shows no evidence for such disorder in [(BEDT-TTF)2]+[Cu(NCS)2]of the type proposed, and in fact illustrates direct evidence to the contrary. An intensity modulation in the STM data supports the possibility of a charge density wave commensurate with the lattice. This interpretation is consistent with the calculated Fermi surface which allows nesting of the wave vector and may explain the peculiar behavior of the temperature dependency of the conductivity data in the normal region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ravy, S., Pouget, J. P., Lenoir, C., and Batail, P., Solid State Commun. 73, 37 (1990).Google Scholar
2. Williams, J. M., Schultz, A. J., Geiser, U., Carlson, K. D., Kini, A. M., Wang, H. H., Kwok, W. -K., Whangbo, M. -H., and Schirber, J. E., Science 252, 1501 (1991).Google Scholar
3. Urayama, H., Yamochi, H., Saito, G., Nozawa, K., Sugano, T., Kinoshita, M., Sato, S., Oshima, K., Kamamoto, A., and Tanaka, J., Chem. Lett. 55 (1988).Google Scholar
4. Urayama, H., Yamochi, H., Saito, G., Sato, S., Kamamoto, A., Tanaka, J., Mori, T., Maruyama, Y., and Inokuchi, H., Chem. Lett. 463 (1988).Google Scholar
5. Doi, T., Oshima, K., Yamazaki, H., Maruyama, H., Maeda, H., Koizumi, A., Kimura, H., Fujita, M., Yunoki, Y., Mori, H., Tanaka, S., Yamochi, H., and Saito, G., J. Phys. Soc. Japan 60, 1441 (1991).Google Scholar
6. Nanoscope II from Digital Instruments, Santa Barbara, California.Google Scholar
7. Fainchtein, R. and Zarriello, P. R., J. Ultramicroscopy (in press).Google Scholar
8. Yoshimura, M., Shigekawa, H., Nejoh, H., Saito, G., and Kawazu, A., Phys. Rev. B, 43 13590 (1991).Google Scholar
9. Miura, Y.F., Kasai, A., Nakamura, T., Komizu, H., Matsumoto, M., and Kawabata, Y., Mol. Cryst. Liq. Cryst. 196, 161 (1991).Google Scholar
10. Mori, Y., Maruyama, Y., Mori, H., and Saito, G., Japn. J. of Appl. Phys., 30, L358 (1991).Google Scholar
11. Magonov, S. N., Bar, G., Keller, E., Yagubskii, E. B., Laukhina, E. E., and Cantow, H. J., Ultramicroscopy (in press).Google Scholar
12. Oshima, K., Mori, T., Inokuchi, H., Mori, H., Yamochi, H., and Saito, G., Synth. Met. 41–43, 2175 (1991).Google Scholar
13. Tersoff, J. and Hamann, D. R., Phys. Rev. Lett. 50, 25 (1983).Google Scholar
14. Tersoff, J. and Hamann, D. R., Phys. Rev. B 31, 2 (1985).Google Scholar
15. Wolf, S. A., and Kresin, V. Z. in Organic Superconductivity, edited by Kresin, V. Z. and Little, W. A. (Plenum Press, New York, 1990), p. 31.Google Scholar
16. Watanabe, Y., Sasaki, T., Sato, H., and Toyota, N., J. Phys. Soc. Japan 60, 2118 (1991).Google Scholar
17. Parker, I. D., Friend, R. H., Kurmoo, M., Day, P., Lenoir, C., and Batail, P., J. Phys.: Condens. Matter 1, 4479 (1989).Google Scholar
18. Toyota, N. and Sasaki, T., Solid State Commun. 74, 361 (1990).Google Scholar
19. Kusuhara, H., Sakata, Y., Ueba, Y., Tada, K., Kaji, M., and Ishiguro, T., Solid State Commun. 74, 251 (1990).Google Scholar