Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-02T08:28:55.018Z Has data issue: false hasContentIssue false

Sulfonated Metal-Oxide Surfaces: What Makes them So Acidic?

Published online by Cambridge University Press:  21 February 2011

Kim F. Ferris*
Affiliation:
Pacific Northwest Laboratory, Metals and Ceramic Sciences Center, P.O. Box 999, Richland, WA 99352
Get access

Abstract

While some metal-oxide surfaces can be classified as acidic, after reacting with H2SO4 their acidity can be even higher than the parent sulfuric acid. In this paper, ab initio electronic structure calculations (3-21G+*//3-21G*) were performed on a series of model surfaces to examine these sulfonated species as strong, possibly even superacids. Our results indicate that the polarizing nature of the metal-oxide / sulfonate interaction stabilizes strong Bronsted and Lewis acid sites at the M-O surface and the sulfur center. Thermodynamic analysis has been performed to provide information for experimental verification.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Arata, K. and Hino, M., Mat. Chem. Phys. 26, 213 (1990).CrossRefGoogle Scholar
2 Tanabe, K., Hattori, H., and Yamaguchi, T., Crit. Rev. Surf. Chem. 1, 1 (1990).Google Scholar
3 Gaussian, 90, Revision, H, Frisch, M. J., Head-Gordon, M., Trucks, G. W., Foresman, J. B., Schlegel, H. B., Raghavachari, K., Robb, M., Binkley, J. S., Gonzalez, C., Defrees, D. J., Fox, D. J., Whiteside, R. A., Seeger, R., Melius, C. F., Baker, J., Martin, R. L., Kahn, L. R., Stewart, J. J. P., Topiol, S., and Pople, J. A., Gaussian, , Inc., Pittsburgh PA, 1990.Google Scholar
4 Dupuis, M., Spangler, D., and Wendoloski, J.J., NRCC Software Catalog, 1980, 1, Program QG10; M.W. Schmidt, J.A. Boatz, K.K. Baldridge, S. Koseki, M.S. Gordon, S.T. Elbert, and B. Lam, QCPE Bull. 7, 115 (1987).Google Scholar
5 Pietro, W.J., Francl, M.M., Hehre, W.J., DeFrees, D.J., Pople, J.A., and Binkley, J.S., J. Amer. Chem. Soc. 104, 5039 (1982).CrossRefGoogle Scholar
6 Clark, T., Chandrasekhar, J., Spitznagel, G.W., and von, R. Schleyer, R., J. Comp. Chem. 4, 294 (1983).CrossRefGoogle Scholar
7 Kim, K. and King, W.T., J. Chem. Phys. 80,969 (1984); K. Kim and W.T. King, J. Chem. Phys. 80, 983 (1984); J. Cioslowski, J. Amer. Chem. Soc. 111, 8333 (1989) ; J. Cioslowski, T. Hamilton, G. Scuseria, B.A. Hess, J. Hu, L.J. Schaad, M. Dupuis, J. Amer. Chem. Soc. 112,4183 (1990).CrossRefGoogle Scholar
8 Sosa, C.P., Noga, J., and Ferris, K.F., J. Mol. Struct. 265, 163, (1992).CrossRefGoogle Scholar
9 Ferris, K.F., Materials Letters 17, 146 (1993).CrossRefGoogle Scholar
10 Jin, T., Machida, M., Yamaguchi, T., and Tanabe, K., Inorg. Chem. 23, 4396 (1984); T. Yamaguchi, T. Jin, and K. Tanabe, J. Phys. Chem. 90, 3148 (1986); and T. Jin, T. Yamaguchi, and K. Tanabe, J. Phys. Chem. 90,4794 (1986).CrossRefGoogle Scholar
11 γn = ׀ χnn׀; αn = ׀ ( √ 2/3) βnnχ and (γn)2 + (αn)2 = 1 where μn is the mean dipole moment, χntheeffective atomic charge, and βn the atomic anisotropy.Google Scholar
12 Yamaguchi, , T., Applied Catalysis, 61,1 (1990).CrossRefGoogle Scholar