Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-21T13:42:14.936Z Has data issue: false hasContentIssue false

Superconducting Properties of v/cr Artificial Metallic Superlattices

Published online by Cambridge University Press:  26 February 2011

B. M. Davis
Affiliation:
Materials Research Center, Northwestern university, Evanston IL, 60201
J. Q. Zheng
Affiliation:
Materials Research Center, Northwestern university, Evanston IL, 60201
M. R. Ma
Affiliation:
Materials Research Center, Northwestern university, Evanston IL, 60201
B. Y. Jin
Affiliation:
Materials Research Center, Northwestern university, Evanston IL, 60201
J. E. Hilliard
Affiliation:
Materials Research Center, Northwestern university, Evanston IL, 60201
J. B. Ketterson
Affiliation:
Materials Research Center, Northwestern university, Evanston IL, 60201
Get access

Abstract

We have studied the superconducting properties of V/Cr superlattices. Superlattices of V100Crx, V150Crx, and V200Crx, with x varying between 3 and 80 atomic planes have been prepared. The films have a strong (110) texture and were grown on sapphire substrates at 250°C in an ultra-high vacuum system. The zero field transition temperature of the V150Crx and V200Crx, but not the V100Crx films have been adequately modeled using Werthamer's theory for proximity effect coupled films. The films have a dimensional crossover in the parallel upper critical field when the thickness of the Cr layers is about 60 atomic planes.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENces

1. Ruggiero, S.T., Barbee, T.W. Jr, and Beasley, M.R., Phys. Rev. Lett. 45, 1299(1980).CrossRefGoogle Scholar
2. Jin, B.Y., Shen, Y.H., Yang, H.Q., Wong, H.K., Hilliard, J.E., Ketterson, J.B., and Sclmller, I.K., J. Appl. Phys. 57 (7), 2543(1985).CrossRefGoogle Scholar
3. Kanoda, K., Mazaki, H., Yamada, T., Hosoito, N., and Shinjo, T., Phys. Rev. B33 (3), 2052(1986).CrossRefGoogle Scholar
4. Banerjee, I., Yang, Q.S., Falco, C.M., and Schuller, I.K., Phys. Rev. B28 (9), 5037(1983).CrossRefGoogle Scholar
5. Wong, H.K., Jin, B.Y., Yang, H.Q., Hilliard, J.E., and Ketterson, J.B., Superlattices and Microstructures 1, 259(1985).CrossRefGoogle Scholar
6. Yang, H.Q., Wong, H.K., Zheng, J.O., Ketterson, J.B., and Hilliard, J.E., J. Vac. Sci. Technol.(A) 2, 1(1984).CrossRefGoogle Scholar
7. Tsakalakos, T., Phd. Thesis, Northwestern University, 1977.Google Scholar
8. Lawrence, w. and Doniach, S., in “Proceeding of the 12th International Conference on Low-Temperature Physics,” Kyoto, edited by Kanda, E. (Academic Press of Japan, Kyoto, 1971),p.361.Google Scholar
9. Harper, F.E. and Tinkham, M., Phys. Rev. 172 (2), 441(1968).CrossRefGoogle Scholar
10. Werthamer, N.R., Phys. Rev. 132 (6), 2440(1963).CrossRefGoogle Scholar
11. de Gennes, P.G. and Guyon, E., Phys. Lett. 3 (4), 169(1963).CrossRefGoogle Scholar
12. Hauser, J.J., Theuerer, H.C., and Werthamer, N.R., Phys. Rev. 142 (1), 118(1966).CrossRefGoogle Scholar