Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-25T16:26:13.629Z Has data issue: false hasContentIssue false

Supramolecular Self-assembly of Chlorins in an Aerosolized Droplet to Synthesize Biomimetic Antennas

Published online by Cambridge University Press:  07 October 2013

Vivek B. Shah
Affiliation:
Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
Pratim Biswas
Affiliation:
Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
Get access

Abstract

Natural light harvesting organisms have evolved to harvest sunlight efficiently. Green sulfur bacteria, which contain chlorosomes, can survive in extremely low light conditions mainly because of efficient light absorption and transfer of energy, facilitated by the assembled dye molecules. Due to these reasons, chlorosomes have been used in dye sensitized solar cells to improve the light absorption and performance. The chlorosome absorption spectrum is fixed and their size is dependent on the organism. Various solution-based techniques have been developed for synthesizing mimics by supramolecular self-assembly. However, controlling the size of agglomerates and their subsequent deposition on surfaces to fabricate a device is difficult. In this work, a one-step aerosol-based self-assembly technique has been developed for the first time, to assemble and deposit chlorin (Bacteria chlorophyll mimics) agglomerates. A shift in absorption spectra of 79 nm which is comparable to the natural system was obtained. The analysis shows that kinetics of nucleation play an important role in assembly.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blankenship, R.E., Olson, J.M. and Miller, M., Anoxygenic Photosynthetic Bacteria, edited by Blankenship, R. E., Madigan, M. T. and Bauer, C. E. (Kluwer Academic Publishers, The Netherlands 1995), pp. 399.CrossRefGoogle Scholar
Modesto-Lopez, L.B., Thimsen, E.J., Collins, A.M., Blankenship, R.E. and Biswas, P., Energy Env. Sci. 3, 216 (2010).CrossRefGoogle Scholar
Mass, O., Pandithavidana, D.R., Ptaszek, M., Santiago, K., Springer, J.W., Jiao, J., Tang, Q., Kirmaier, C., Bocian, D.F., Holten, D. and Lindsey, J.S., New J. Chem. 35, 2671 (2011).CrossRefGoogle Scholar
Huber, V., Katterle, M., Lysetska, M. and Würthner, F., Angew. Chem. Int. Ed. 44, 3147 (2005).CrossRefGoogle Scholar
Roger, C., Muller, M.G., Lysetska, M., Miloslavina, Y., Holzwarth, A.R. and Wurthner, F., J. Am. Chem. Soc. 128, 6542 (2006).CrossRefGoogle Scholar
Balaban, T.S., Acc. Chem. Res. 38, 612 (2005).CrossRefGoogle Scholar
Miyatake, T., Tamiaki, H., Holzwarth, A.R. and Schaffner, K., Helv. Chim. Acta 82, 797 (1999).3.0.CO;2-9>CrossRefGoogle Scholar
Miyatake, T., Tamiaki, H., Holzwarth, A.R. and Schaffner, K., Photochem. Photobiol. 69, 448 (1999).CrossRefGoogle Scholar
Huijser, A., Marek, P.L., Savenije, T.J., Siebbeles, L.D.A., Scherer, T., Hauschild, R., Szmytkowski, J.d., Kalt, H., Hahn, H. and Balaban, T.S., J. Phys. Chem. C 111, 11726 (2007).CrossRefGoogle Scholar
Misawa, K., Ono, H., Minoshima, K. and Kobayashi, T., Appl. Phys. Lett. 63, 577 (1993).CrossRefGoogle Scholar
Miyatake, T. and Tamiaki, H., Coord. Chem. Rev. 254, 2593 (2010).CrossRefGoogle Scholar
Wang, W.N., Park, J. and Biswas, P., Catal. Sci. Technol. 1, 593 (2011).CrossRefGoogle Scholar
Wu, C., Lee, D. and Zachariah, M.R., Langmuir 26, 4327 (2010).CrossRefGoogle Scholar
Moon, J.H., Yi, G.R., Yang, S.M., Pine, D.J. and Bin Park, S., Adv. Mater. 16, 605 (2004).CrossRefGoogle Scholar
Lee, S.Y., Widiyastuti, W., Iskandar, F., Okuyama, K. and Gradon, L., Aerosol Sci. Technol. 43, 1184 (2009).CrossRefGoogle Scholar
Chen, D.R., Pui, D.Y.H. and Kaufman, S.L., J. Aerosol Sci 26, 963 (1995).CrossRefGoogle Scholar
Basak, S., Chen, D.R. and Biswas, P., Chem. Eng. Sci. 62, 1263 (2007).CrossRefGoogle Scholar
Chen, D.-R. and Pui, D.Y.H., Aerosol Sci. Technol. 27, 367 (1997).Google Scholar
Prokhorenko, V.I., Steensgaard, D.B. and Holzwarth, A.R., Biophys. J. 85, 3173 (2003).CrossRefGoogle Scholar
Roden, J., Strunz, W.T. and Eisfeld, A., Int. J. Mod Phys B 24, 5060 (2010).CrossRefGoogle Scholar
Hinds, W.C., Aerosol Technology, (John Wiley & Sons, New York, 1999).Google Scholar
Friedlander, S.K., Smoke, Dust, and Haze: Fundamental of Aerosol Dynamics, Second ed. (Oxford University Press, New York, 2000).Google Scholar