Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-27T19:26:08.684Z Has data issue: false hasContentIssue false

The Surface Chemistry of Si/Ge Deposition

Published online by Cambridge University Press:  25 February 2011

John E. Crowell
Affiliation:
Department of Chemistry, University of California at San Diego, La Jolla, CA 92093-0314
Guangquan Lu
Affiliation:
Department of Chemistry, University of California at San Diego, La Jolla, CA 92093-0314
Bob M. H. Ning
Affiliation:
Department of Chemistry, University of California at San Diego, La Jolla, CA 92093-0314
Get access

Abstract

Reaction processes leading to the deposition of Si and Ge epilayers have been delineated using a combination of surface spectroscopies. The dissociative adsorption of disilane and digermane has been investigated on the Ge(111) surface using multiple internal reflection infrared spectroscopy (MIRIRS). Molecular adsorption of Si2H6 and Ge2H6 occurs for adsorption below 150K. Molecular and dissociative adsorption are competitive processes at 110-140K. Dissociative adsorption of Si2H6 and Ge2H6 occurs above 150K. Trihydride formation (SiH3 and GeH3) is favored near 150-200K, while Si-H and Ge-H bond scission becomes significant above 200K. Di- and trihydrides are dominant below 300K, while the monohydrides are most prevalent above 300K. Decomposition of all surface hydrides occurs by 600K. On the Si(100) surface, digermane adsorption leads to the deposition of a Ge overlayer. Hydrogen desorption from the Ge/Si(100) surface is strongly altered with respect to the clean Si surface. The observed desorption behavior has important consequence on the low temperature deposition of Sil-xGex by thermal CVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearsall, T.P., CRC Crit. Rev. in Solid State and Mat. Sci. 15, 551 (1989)Google Scholar
2. Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., Fresart, E. D., Stork, J. M. C., Sun, J. Y. C., Harame, D. L., and Burghartz, J. N., IEEE Electron Device Lett. 11, 171 (1990); IEEE Trans. Electron Devices 36, 2043 (1989)Google Scholar
3. King, C. A., Hoyt, J. L., and Gibbons, J. F., IEEE Trans. Electronic Devices 36, 2093 (1989); J. L. Hoyt, C. A. King, D. B. Noble, C. M. Gronet, J. F. Gibbons, M. P. Scott, S. S. Laderman, S. J. Rosner, K. Nauka, J. Turner and T. I. Kamins, Thin Solid Films 184, 93 (1990)Google Scholar
4. Gates, S.M., Surface Sci. 195, 307 (1988)Google Scholar
5. Becker, R.S., Swartzentruber, B.S., Vickers, J.S., and Klitsner, T., Phys. Rev. B 39, 1633 (1989)Google Scholar
6. Bringans, R.D., Uhrberg, R.I.G., Bachrach, R.Z., and Northrup, J.E., J. Vac. Sci. Technol. A 4, 1380 (1986)Google Scholar
7. Bringans, R.D., Uhrberg, R.I.G., and Bachrach, R.Z., Phys. Rev. B 34,2373 (1986).Google Scholar
8. Feidenhans'l, R., Pedersen, J.S., Bohr, J., Nielsen, M., Grey, F., and Johnson, R.L., Phys. Rev. B 38, 9715 (1988)Google Scholar
9. Imbihl, R., Demuth, J.E., Gates, S.M. and Scott, B.A., Phys. Rev. B 39,5222 (1989).Google Scholar
10. Uram, K.J. and Jansson, U., J. Vac. Sci. Technol. B 7, 1176 (1989); K.J. Uram and U. Jansson, Surface Sci., in press.Google Scholar
11. Jansson, U. and Uram, K.J., J. Chem. Phys. 91, 7978 (1989)Google Scholar
12. Avouris, Ph. and Bozso, F., J. Phys. Chem. 94, 2243 (1990)Google Scholar
13. Meyerson, B.S., Uram, K.J. and LeGoues, F.K., Appl. Phys. Lett. 53, 2555 (1988); K.J. Uram and B.S. Meyerson, Mat. Res. Soc. Symp. Proc. Vol. 102, 307 (1988)Google Scholar
14. Harrick Scientific Corp., Ossining, NY.Google Scholar
15. Durig, J. and Church, J.S., J. Chem. Phys. 73, 4784 (1980)Google Scholar
16. Crawford, V.A., Rhee, K.H., and Wilson, M.K., J. Chem. Phys. 37, 2377 (1962)Google Scholar
17. Crowell, J.E. and Lu, G.Q., J. Electron Spectrosc. and Relat. Phenom., 54/55, 1045 (1990).Google Scholar
18. Surnev, L. and Tikhov, M., Surface Sci. 138, 40 (1984)Google Scholar
19. Burger, H. and Rahner, A., in Vibrational Spectra and Structure Ed. by Durig, J. R., 18, 217 (1990)Google Scholar
20. Burrows, V.A., Chabal, Y.J., Higashi, G.S., Raghavachari, K., and Christman, S.B., Appl. Phys. Lett. 53, 998 (1988); G.S. Higashi, Y.J. Chabal, G.W. Trucks, and K. Raghavachari, Appl. Phys. Lett. 56, 656 (1990);Google Scholar
21. Chabal, Y.J., Surface Sci. 168 594 (1986).Google Scholar
22. Chabal, Y.J. and Raghavachari, K., Phys. Rev. Lett. 53, 282 (1984); 54, 1055 (1985)Google Scholar
23. Wagner, H., Butz, R., Backes, U. and Bruchmann, D., Solid State Commun. 38, 1155 (1981)Google Scholar
24. Froitzheim, H., Kohler, U. and Lammering, H., Surface Sci. 149, 537 (1985)Google Scholar
25. Crowell, J.E. and Lu, G.Q., “Epitaxial Heterostructures”,Mat. Res. Soc. Symp. Proc. 198 (1990); G.Q. Lu and J.E. Crowell, “Symposium on Superlattice Structures and Devices”, Electrochem. Soc. Proc. (1990).Google Scholar
26. Ning, B.M.H. and Crowell, J.E., to be submitted.Google Scholar