Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T05:17:50.889Z Has data issue: false hasContentIssue false

Surface Cleaning for Silicon Epitaxy Using Photoexcited Fluorine Gas

Published online by Cambridge University Press:  21 February 2011

Takayuki Aoyama
Affiliation:
Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Tatsuya Yamazaki
Affiliation:
Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Takashi Ito
Affiliation:
Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Get access

Abstract

We studied surface cleaning using photoexcited fluorine gas diluted with hydrogen (UV/F2/H2). We found that UV/F2/H2 cleaning selectively removes native Si oxides from thermal oxides without etching the bulk Si. After UV/F2/H2 cleaning, hydrogen atoms terminate almost all the dangling bonds on the Si surface, and fluorine atoms terminate the few remaining bonds. UV/F2/H2 cleaning also flattens the Si surface. We applied UV/F2/H2 cleaning to Si epitaxy and obtained single-crystal Si films with preannealing and growth temperatures as low as 600°C, 150°C lower than for conventional methods. UV/F2/H2 cleaning is a good dry precleaning method for various processes that include Si epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sugii, T., Yamazaki, T., Fukano, T., and Ito, T., IEEE Trans. Electron Dev. Lett. EDL–8, 528 (1987).Google Scholar
2 Yamazaki, T., Watanabe, S., and Ito, T., J. Electrochem. Soc. 137, 313 (1990).Google Scholar
3 Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
4 Miki, N., Kikuyama, H., Kawanabe, I., Miyashita, M., and Ohmi, T., IEEE Trans. Electron Devices ED–37, 107 (1990).Google Scholar
5 Yamazaki, T., Miyata, N., Aoyama, T., Ito, T., J. Electrochem. Soc. 139, 1175 (1992).Google Scholar
6 Novak, R. E. and Syverson, D. J., Ext. Abst. 22nd Conf. on Solid-State Dev. and Mater., August 22-24, 1990, Sendai, Japan (Business Center for Academic Societies, Tokyo, Japan), pp. 10191021.Google Scholar
7 Burns, G. P., Appl. Phys. Lett. 53, 1423 (1988).Google Scholar
8 Eaglesham, D. J., Higashi, G. S., and Cerullo, M., Appl. Phys. Lett. 59, 685 (1991).Google Scholar
9 Liehr, M., Greenlief, C. M., Kasi, S. R., and Offenberg, M., Appl. Phys. Lett. 56, 629 (1990).Google Scholar
10 Mcintosh, R., Kuan, T., and Defresart, E., J. Electronic Mater. 21, 57 (1992).Google Scholar
11 Grunder, M. and Jacob, H., Appl. Phys. A39, 73 (1986).Google Scholar
12 Chabal, Y J., Higashi, G. S., Raghavachari, K., and Burrows, V. A., J. Vac. Sci. Technol. A7, 2104 (1989).Google Scholar
13 Vig, J. R., J. Vac. Sci. Technol. A3, 1027 (1985).Google Scholar
14 Suemitsu, M., Kaneko, T., and Miyamoto, N., Jpn. J. Appl. Phys. 28, 2421 (1989).Google Scholar
15 Kaneko, T., Suemitsu, M., and Miyamoto, N., Jpn. J. Appl. Phys. 28, 2425 (1989).Google Scholar
16 Aoyama, T., Yamazaki, T., and Ito, T., J. Electrochem. Soc. 140, 366 (1993).Google Scholar
17 Aoyama, T., Yamazaki, T., and Ito, T., Appl. Phys. Lett.. 61, 102 (1992).Google Scholar
18 Okabe, H., “Photochemistry of Small Molecules,” (Wiley, New York, 1978) 184.Google Scholar
19 Aoyama, T., Yamazaki, T., and Ito, T., Appl. Phys. Lett. 59, 2576 (1991).Google Scholar
20 Aoyama, T., Yamazaki, T., and Ito, T., J. Electrochem. Soc. 140, 1704 (1993).Google Scholar
21 Zazzera, L. A. and Moulder, J. F., J. Electrochem. Soc. 136, 484 (1989).Google Scholar