Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-23T05:15:31.221Z Has data issue: false hasContentIssue false

Surface Investigation by Neutron Reflection

Published online by Cambridge University Press:  21 February 2011

B. Farnoux*
Affiliation:
Laboratoire Iéon Brillouin (CEA-CNRS), CEN-Saclay 91191 Gif-sur-Yvette Cedex, France
Get access

Abstract

Several phenomena analogous to those observed in classical optics, such as reflection, refraction and interference, are also observed with slow neutrons. Information on surface properties, described by a refractive index profile, can be extracted from reflection experiments. This information is similar to that obtained by X-ray reflection. However, there are some instances where the new neutron method provides a distinct advantage. The refractive index is related to the scattering length density, a parameter which describes the neutron-matter interaction. Owing to the magnetic interaction, magnetic materials have a neutron spin dependent refractive index, and a critical reflection of polarized neutrons is a particularly sensitive probe of surface magnetism. On the other hand, in contrast to X-rays, neutron scattering length values vary randomly from element to element. Isotopic substitution can then produce a contrast in the scattering length density. Of particular importance is the large difference between hydrogen and deuterium. This is a distinct advantage for studiyng many problems in surface chemistry, particularly in the polymer field.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Braslau, A., Deutsch, M., Pershan, P.S., Weiss, A.H., Als-Nielsen, J. and Bohr, J., Phys. Rev. Lett. 54, 114 (1985)CrossRefGoogle Scholar
2. Lu, B.C., and Rice, S.A., J. Chem. Phys. 68, 5558 (1978)Google Scholar
3. Bacon, G.E., Neutron Diffraction, (Clarendon Press, Oxford 1975)Google Scholar
4. Sears, V.F., Neutron Optics, (Oxford University Press, 1989)Google Scholar
5. Williams, W. Gavin, Polarized Neutron, (Clarendon Press, Oxford 1988)Google Scholar
6. Klein, A.G. and Werner, G.A., Rep. Prog. Phys. 46 (1983)Google Scholar
7. Born, M. and Wolf, E., Principles of Optics, Pergamon Press, Oxford 1970)Google Scholar
8. Farnoux, B. in Neutron Scatterine in the Nineties, (IAEA Vienna 1985)Google Scholar
9. Abeles, F., Ann. Phys. (Paris) 3, 504 (1948)Google Scholar
10. Sinha, S.K., Sirota, E.B., Garoff, G. and Stanley, H.B., Phys. Rev. 31, 2297 (1988)CrossRefGoogle Scholar
11. Nevot, L. and Croce, P., Rev. Phys. Appl. 15, 761 (1980)Google Scholar
12. Meunier, J., Acad, C.R.. Sci. Paris Ser.B, 292, 1469 (1981)Google Scholar
13. Felcher, G.P., SPIE vol. 983, Thin-Film Neutron Optical Devices (1988)Google Scholar
14. Guisselin, O., to appear in J. Phys. Paris (1989)Google Scholar
15. Fermi, E. and Zinn, W.H., Phys. Rev. 70, 103 (1946)Google Scholar
16. Hughes, D.J., Neutron Optics, (interscience Pub., New-York, 1954)Google Scholar
17. Koester, L., Neutron Physics. (Springer Verlag, Berlin 1977)Google Scholar
18. Maier-Leibnitz, H. and Springer, T., J. Nucl. Energy A/B17, 217 (1963)Google Scholar
19. Farnoux, B., Hennion, B. and Fagot, J. in neutron Inelastic Scatterine, vol.2 (AIEA Vienna, 1968)Google Scholar
20. Saxena, A.M. and Schoenborn, B.P., Acta Cryst. A33, 805 (1977)Google Scholar
21. Schaerpf, O. in Neutron Scatterinz in the Nineties, (IAEA Vienna 1985)Google Scholar
22. Majkrzak, C.F., Physica 136B, 69 (1986)Google Scholar
23. Hayter, J.B., Highfield, R.R., Pulmann, B.J., Thomas, R.K., McMullen, A.I., Penfold, J., J. Chem. Soc. Faraday Trans. 1, 1437 (1981)Google Scholar
24. Rennie, A.R., Crawford, R.J., Lee, E.M., Thomas, R.K., Crowley, T.L., Roberts, S., Qureshi, M.S. and Richards, R.W., Macromolecules 22, 3466 (1989)Google Scholar
25. Sun, X., Bouchaud, E., Lapp, A.. Farnoux, B., Daoud, M. and Jannink, C., Europhys. Lett. 6, 207 (1988)Google Scholar
26. Ober, R., Paz, L., Taupin, C. and Pincus, P., Macromolecules 16, 50 (1983)Google Scholar
27. Cennes, P.G. de and Pincus, P., J. Phys. Lett. (Paris) L4, L241 (1983)Google Scholar
28. Guiselin, O., Private CommunicationGoogle Scholar
29. Composto, R.J., Stein, R.S., Kramer, E.J., Jones, R.A.L., Mansour, A., Karim, A. and Felcher, J.P., Physica B156&157, 434 (1989)Google Scholar
30. Anastasiadis, S.H., Russel, T.P., Satija, S.K. and Majkrzak, C.F., Phys. Rev. Lett. 62, 1852 (1989)Google Scholar
31. Fernandez, M.L., Higgins, J.S., Penfold, J., Ward, R.C., Shackelton, C. and Walsh, D.J., Polymer 29, 1023 (1988)Google Scholar
32. Russel, T.P., Karim, A., Mansour, A. and Felcher, G.P., macromolecules 21, 1890 (1988)Google Scholar
33. Maaza, M., Private CommunicationGoogle Scholar
34. Felcher, G.P., Hilleke, R.O., Crawford, R.K., Haumann, J., Kleb, R. and Ostrowski, G., Rev. sci. Instrum. 58, 609 (1987)Google Scholar
35. Felcher, G.P., Kampwirth, R.T., Cray, K.E. and Felici, R., Phys. Rev. Lett. 52, 1539 (1984)Google Scholar
36. Felcher, G.P., Gray, K.E., Kampwirth, R.T. and Brodsky, M.B., Physica B136, 59 (1986)Google Scholar
37. Bland, J.A.C., Pescia, D. and Willis, R.F., Phys. Rev. Lett. 58, 1244 (1987)Google Scholar