Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T08:30:14.202Z Has data issue: false hasContentIssue false

Surface States in Passivated, Unpassivated and Core/Shell Nanocrystals: Electronic Structure and Optical Properties

Published online by Cambridge University Press:  01 February 2011

Garnett W. Bryant
Affiliation:
Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899–8423
W. Jaskolski
Affiliation:
Instytut Fizyki, UMK, Grudziadzka 5, 87–100 Torun, Poland
Get access

Abstract

Surface effects significantly influence the functionality of semiconductor nanocrystals. A theoretical understanding of these surface effects requires models capable of describing surface details at an atomic scale, passivation with molecular ligands, and few-monolayer capping shells. We present an atomistic tight-binding theory of the electronic structure and optical properties of passivated, unpassivated and core/shell nanocrystals to study these surface effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Science 281, 2013 (1998).Google Scholar
2. Chan, W.C.W. and Nie, S., Science 281, 2016 (1998).Google Scholar
3. Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., and Libchaber, A., Science 298, 1759 (2002).Google Scholar
4. Medintz, I.L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., and Mauro, J.M., Nature Materials 2, 630 (2003).Google Scholar
5. Peng, X., Schlamp, M.C., Kadavanich, A.V., and Alivisatos, A.P., J. Am. Chem. Soc. 119, 7019 (1997).Google Scholar
6. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K. F., and Bawendi, M.G., J. Phys. Chem. B 101, 9463 (1997).Google Scholar
7. Cao, Y.W. and Banin, U., J. Am. Chem. Soc. 122, 9692 (2000).Google Scholar
8. Lu, S.-Y., Wu, M.-L., and Chen, H.-L., J. Appl. Phys. 93, 5789 (2003).Google Scholar
9. Efros, Al.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D.J., and Bawendi, M.G., Phys. Rev. B 54, 4843 (1996).Google Scholar
10. Banin, U., Lee, J.C., Guzelian, A.A., Kadavanich, A.V., Alivisatos, A.P., Jaskolski, W., Bryant, G.W., Efros, Al.L., and Rosen, M., J. Chem. Phys. 109, 2306 (1998).Google Scholar
11. Wang, L.W. and Zunger, A., Phys. Rev. B 53, 9579 (1996).Google Scholar
12. Lippens, P. E. and Lannoo, M., Phys. Rev. B 39, 10935 (1989).Google Scholar
13. Leung, K. and Whaley, K. B., Phys. Rev. B 56, 7455 (1997).Google Scholar
14. Leung, K., Pokrant, S., and Whaley, K. B., Phys. Rev. B 57, 12291 (1998).Google Scholar
15. Little, R.B., El-Sayed, M.A., Bryant, G.W., and Burke, S.E., J. Chem. Phys. 114, 1813 (2001).Google Scholar
16. Bryant, G. W. and Jaskolski, W., Phys. Rev. B 67, 205320 (2003).Google Scholar
17. Leung, K. and Whaley, K.B., J. Chem. Phys. 110, 11012 (1999).Google Scholar
18. Pokrant, S. and Whaley, K.B., Eur. Phys. J. D 6, 255 (1999).Google Scholar
19. Puzder, A., Williamson, A.J., Reboredo, F.A., and Galli, G., Phys. Rev. Lett. 91, 157405 (2003).Google Scholar
20. Vogl, P., Hjalmarson, H. P., and Dow, J. D., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
21. Frage, S. and Muszynska, J., Atoms in External Fields, (Elsevier, New York 1981).Google Scholar
22. Yu, Z., Li, J., O'Connor, D.B., Wang, L.-W., and Barbara, P.F., J. Phys. Chem. B 107, 5670 (2003).Google Scholar