Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-26T20:21:47.280Z Has data issue: false hasContentIssue false

Switching Effects, Current Fluctuations and Lateral Photovoltage - The Electrical Appearance of A-Si:H/Metal Multilayers

Published online by Cambridge University Press:  16 February 2011

Andreas N. Panckow
Affiliation:
Institut für Experimentelle Physik der Otto-von-Guericke-Universität Magdeburg, PSF 4120, 39016 Magdeburg, Germany
T.P. Drüsedau
Affiliation:
Institut für Experimentelle Physik der Otto-von-Guericke-Universität Magdeburg, PSF 4120, 39016 Magdeburg, Germany
U. Schmidt
Affiliation:
Fachbereich Physik und Forschungsschwerpunkt Materialwissenschaften der Universität Kaiserslautern, PSF 3049, 67663 Kaiserslautern, Germany
Get access

Abstract

Multilayer systems (MLS) consisting of hydrogenated Amorphous silicon (a-Si:II) and a transition Metal (Mo, Ti) were prepared by alternating dual magnetron sputtering. In this study we investigate the electrical performance of multilayer films containing discontinuous metal sublayers separated by a-Si:H sublayers of 80 nm thickness. A voltage of typical 8 V applied to the coplanar electrodes switches the samples from a semiconducting to a metallic state. The switching effect, which is reversible by thermal annealing, is accompanied by chaotic current oscillations. The temperature dependence of the conductivity in the metallic state is described by Inσ α T−1/2. The asymmetric illumination of the interelectrode spacing in coplanar configuration resulted in a generation of a lateral photovoltage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Naruse, Y. and Hatayama, T., IEEE Trans. Nucl. Science, 36 1347 (1989).Google Scholar
2. Levine, B.F., Willens, R.H., Bethea, C.G. and Brašen, D., Appl. Phys. Lett. 49 1537 (1986).Google Scholar
3. Panckow, A.N., Biasing, J. and Drüsedau, T.P., J. Non-Cryst. Solids 166–164 845 (1994).Google Scholar
4. Holloway, K. and Sinclair, R., J. Appl. Phys. 61 1359 (1987).Google Scholar
5. Abeles, B., Sheng, P., Coutts, M.D. and Arie, Y., Adv. Phys. 24 407 (1975).Google Scholar
6. Mostefa, M. and Olivier, G., Physica B, 142 80 (1986).Google Scholar
7. Heinrich, A., Gladun, C., Schreiber, H., Schumann, J. and Vinzelberg, H., Vakuum 41 1408 (1990).Google Scholar
8. Vinzelberg, H., Heinrich, A., Gladun, C. and Elefant, D., Phil. Mag. B, 65 651 (1992).Google Scholar
9. Laurent, C. and Kay, E., Atoms. Molecules and Clusters 12 465 (1989).Google Scholar
10. Hajto, J., Owen, A.E., Snell, A.J., Lecomber, P.G. and Rose, M.J., Phil. Mag. B 63 349 (1991).CrossRefGoogle Scholar
11. Parman, C.E., Israeloff, N.E. and Kakalios, J., Phys. Rev. B, 47 12578 (1993).Google Scholar
12. Drüsedau, T.P. and Panckow, A.N., Phil. Mag. B, (1994) (in proof).Google Scholar
13. Adkins, C.J., J. Phys.: Condens. Matter 1 1253 (1989).Google Scholar