Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-30T01:58:15.985Z Has data issue: false hasContentIssue false

Synchrotron X-Ray Scattering Studies of the Surface Structure and Dynamics of Liquids and Liquid Films

Published online by Cambridge University Press:  26 February 2011

Hyunjung Kim
Affiliation:
hkim@sogang.ac.kr, Sogang University, Physics, 1 Sinsu-Dong, Mapo_Gu,, Seoul, N/A, N/A, Korea, Republic of, 82-2-705-8431, 82-2-701-8431
Zhang Jiang
Affiliation:
zjiang@physics.ucsd.edu
Heeju Lee
Affiliation:
june7736@sogang.ac.kr
Young Joo Lee
Affiliation:
youngjl@sogang.ac.kr
Xuesong Jiao
Affiliation:
jiaox@aps.anl.gov
Chunhua Li
Affiliation:
chuli@ic.sunysb.edu
Laurence Lurio
Affiliation:
lurio@physics.niu.edu
Xuesong Hu
Affiliation:
xhu@anl.gov
Jyotsana Lal
Affiliation:
jlal@anl.gov
Miriam Rafailovich
Affiliation:
mrafailovich@notes.cc.sunysb.edu
Sunil K Sinha
Affiliation:
ssinha@physics.ucsd.edu
Get access

Abstract

The dynamics of surface fluctuations in thin supported polystyrene films have been investigated using x-ray photon correlation spectroscopy (XPCS) in reflection geometry. The results from the films thicker than four times of the radius of gyration (Rg) of polystyrene show the behavior of the capillary waves expected in viscous liquid. However, thinner films show a deviation indicating the need to account for viscoelasticity. Theoretical considerations with viscoelastic liquid model has been performed by introducing frequency dependent viscosity and compared with Fredrickson’s brush model (Macromolecules, 25, 2882 (1992)). The theory has been extended to the surface and interfacial modes in a bilayer film system. The results will be discussed in terms of surface tension, viscosity, and shear modulus.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Liu, Y., Russell, T. P., Samant, M. G., Stöhr, J., Brown, H. R., Cossy-Favre, A., Diaz, J., Macromolecules 30, 7768 (1997).Google Scholar
[2] Kajiyama, T., Tanaka, K., Takahara, A., Macromolecules 30, 280 (1997).Google Scholar
[3] Forrest, J. A. and Jones, R. A. L., in Polymer Surfaces, Interfaces and Thin Films, edited by Karim, A. and Kumar, S. (World Scientific, Singapore, 2000), and references therein.Google Scholar
[4] de Gennes, P. -G., Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, 1979.Google Scholar
[5] Wang, J., Tolan, M., Seeck, O. H., Sinha, S. K., Bahr, O., Rafailovich, M. H., and Sokolov, J., Phys. Rev. Lett. 83, 564 (1999)Google Scholar
[6] Kim, H., Rühm, A., Lurio, L. B., Basu, J. K., Lal, J., Lumma, D., Mochrie, S. G. J., and Sinha, S. K., Phys. Rev. Lett. 90, 068302 (2003)Google Scholar
[7] Jäckle, J., J. Phys.:Codens. Matter 10, 7121 (1998).Google Scholar
[8] Seo, Y.-S., et al. , Phys. Rev. Lett. 94, 157802 (2005).Google Scholar
[9] Lumma, D., Lurio, L. B., Mochrie, S. G. J., and Sutton, M., Rev. Sci. Instrum. 71, 3274 (2000).Google Scholar
[10] Li, C., et al. , Macromolecules 38, 5144 (2005).Google Scholar
[11] Kim, H., et al. , Physica B 336, 211 (2003).Google Scholar
[12] Binder, K., Physica A 200, 722 (1993)Google Scholar
[13] Jiao, X., Stark, J., Lurio, L. B., Narayana, S., Sandy, A., Jiang, Z., and Sinha, S. K., unpublished.Google Scholar
[14] Tidswell, I. M., et al. , Phys. Rev. Lett. 66, 2108 (1991).Google Scholar
[15] Seemann, R., Herminghaus, S., and Jacobs, K., Phys. Rev. Lett. 86, 5534 (2001).Google Scholar
[16] Sinha, S. K., et al. , Phys. Rev. B 38, 2297 (1988).Google Scholar
[17] Sanyal, M. K., et al. , Phys. Rev. Lett. 66, 628 (1991).Google Scholar
[18] Fredrickson, Glenn H., Armand Ajdari, Ludwik Leibler, Jean Pierre CartonMacromolecules, 25, 2882 (1992)Google Scholar