Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T14:17:55.649Z Has data issue: false hasContentIssue false

Synthesis and Characterization of a New Ternary Transition Metal Nitride, FeWN2, from the Transition Metal Oxide Precursor, FeWO4

Published online by Cambridge University Press:  22 February 2011

David S. Bem
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Joel D. Houmes
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Hans-Conrad Zur Loye
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Get access

Abstract

The ternary nitride, FeWN2, has been synthesized via ammonolysis of the transition metal tungstate, FeWO4. FeWN2 is hexagonal with a unit cell of a = 2.8724(1) Å and c =10.973(4) A. Rietveld refinements were performed in the space group P3–1C with Rwp=9.91%, and Rp=7.23%. The structure consist of alternating octahedrally coordinated iron-nitrogen layers and trigonal prismatically coordinated tungsten-nitrogen layers. Mössbauer data at 250K indicates an isomer shift δ=0.85 and shows no quadrupole splitting, which is consistent with the octahedral iron coordination in the proposed structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. DiSalvo, F. J., Science, 247, 649655 (1990).Google Scholar
2. Etourneau, J., Portier, J., Ménil, F., J. Alloys Compd., 188, 17 (1992).Google Scholar
3. Rauch, P. E., DiSalvo, F. J., Journal of Solid State Chemistry, 100, 160165 (1992).Google Scholar
4. Gudat, A., Kniep, R., Rabenau, A., Bronger, W., Ruschewitz, U., J. Less-Common Met., 161, 3136 (1990).Google Scholar
5. Chern, M. Y., DiSalvo, F. J., J. Solid State Chem., 88, 528533 (1990).Google Scholar
6. Jacobs, H., Pinkowski, E. Von, J. Less-Common Met., 146, 147160 (1989).Google Scholar
7. Toth, L. E., Transition Metal Carbides and Nitrides, (Academic Press, New York, 1971).Google Scholar
8. Marchand, R., Laurent, Y., Guyader, J., L'Haridon, P., Verdier, P., J. Eur. Ceramic Soc., 8, 197213 (1991).Google Scholar
9. Elder, S. H., DiSalvo, F. J., Doerrer, L. H., Chem. Mater., 4, 928937 (1992).Google Scholar
10. Larson, A. C., Dreele, R. B. Von, Eds. Chemistry Division, LANSCE, MS-H805, Los Alamos National Laboratory.Google Scholar
11. Bern, D. S., Houmes, J. D., Loye, H.-C. zur, Ternary Nitride Synthesis: Ammonolysis of Ternary Oxide Precursors, Rouxels, J., Eds. (Soft Chemistry Routes To New Materials, Trans Tech Publications, Universite de Nantes, 1993), in press.Google Scholar
12. Duncan, J. F., Golding, R. M., Quartly Reviews, 19, 3656 (1965).Google Scholar
13. Bern, D. S., Houmes, J. D., Loye, H.-C. zur, Inorg. Chem., in preparation (1993).Google Scholar
14. Bern, D. S., Gibson, C. P., Loye, H.-C. zur, Chem. Mater., 5, 397399 (1993).Google Scholar
15. Cid-Dresdner, H., Escobar, C., Z. Kristallogr., 127, 6172 (1970).Google Scholar
16. Sleight, A. W., Chamberland, B. L., Weiher, J. F., Inorg. Chem., 7, 1672 (1968).Google Scholar