Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-09T18:27:57.391Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Silica-LiMn2O4 Core-Shell Nanosphere Cathodes

Published online by Cambridge University Press:  06 September 2013

Jong-Moon Lee
Affiliation:
Division of Energy Systems Research, Ajou University, Suwon 443-749, Korea
Soon-Kie Hong
Affiliation:
Division of Energy Systems Research, Ajou University, Suwon 443-749, Korea
Won Il Cho
Affiliation:
Center for Energy Convergence, Korea Institute of Science and Technology, Seoul 136-791, Korea
In-Hyeong Yeo
Affiliation:
Department of Chemistry, Dongguk University, Seoul 100-715, Korea
Sun-il Mho
Affiliation:
Division of Energy Systems Research, Ajou University, Suwon 443-749, Korea
Get access

Abstract

In order to improve the charge/discharge cycling performance of the LiMn2O4 cathode, the spinel LiMn2O4 is coated on the structurally stable SiO2 nanosphere cores, LiMn2O4@SiO2. The core-shell LiMn2O4@SiO2 nanosphere cathodes are prepared by the MnCO3 precipitation on the silica surface and the following solid state reaction of MnCO3@SiO2 with a lithium salt. The charge/discharge cycle stability has improved by the nanostructural characteristics of the LiMn2O4@ shell on the SiO2 core. The cathode composed of LiMn2O4@SiO2 nanospheres exhibits higher capacity retention of 97% than that of LiMn2O4 nanoparticles of 89%, after 100 battery cycles at a 10C rate.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lee, K. T. and Cho, J. P., Nano Today 6, 28 (2011).CrossRefGoogle Scholar
Li, J., Daniel, C., and Wood, D., J. Power Sources 196, 2452 (2011).CrossRefGoogle Scholar
Fergus, J. W., J. Power Sources 195, 939 (2010).CrossRefGoogle Scholar
Park, J. H., Seo, J. H., Plett, G., Lu, W., and Sastry, A. M., Electrochem. Solid-State Lett. 14, A14 (2011).CrossRefGoogle Scholar
Ouyang, C.Y., Shi, S. Q., and Lei, M. S., J. Alloys Compd. 474, 370 (2009).CrossRefGoogle Scholar
Yi, T.- F., Zhu, Y.-R., Zhu, X.-D., Shu, J., Yue, C.-B, and Zhou, A.-N., Ionics 15, 779 (2009).CrossRefGoogle Scholar
Okumura, T., Fukutsuka, T., Uchimoto, Y., Amezawa, K., and Kobayashi, S., J. Power Sources 189, 471 (2009).CrossRefGoogle Scholar
Gu, X., Li, X., Xu, L., Xu, H., Yang, J., and Qian, Y., Int. J. Electrochem. Sci. 7, 2504 (2012).Google Scholar
Ryu, W.-H., Eom, J.-Y., Yin, R.-Z., Han, D.-W., Kim, W.-K., and Kwon, H.-S., J. Mater. Chem. 21, 15337 (2011).CrossRefGoogle Scholar
Shaju, K. M., Bruce, P. G., Chem. Mater. 20, 5557 (2008).CrossRefGoogle Scholar
Jayaraman, S., Aravindan, V., Kumar, P. S., Ling, W. C., Ramakrishna, S., and Madhave, S., Chem. Commun. 49, 6677 (2013).CrossRefGoogle Scholar
Stober, W., Fink, A. and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar