Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-29T21:15:12.689Z Has data issue: false hasContentIssue false

Synthesis and Optical Properties of Oriented Cu Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Om Parkash Siwach
Affiliation:
opsiwach@gmail.com, Jawaharlal Nehru University, School of Physical Sciences, India
P. Sen
Affiliation:
psen0700@mail.jnu.ac.in, India
Get access

Abstract

Crystallographic orientation of atomic planes makes a metal amenable to specific properties as desired in catalysis and environment sensing. Oriented metal nanoparticles are however less known. Here we present X-ray diffraction, transmission electron microscopy and atomic force microscopy data to provide evidence of copper nanoparticles with preferred orientation, achieved by electro-explosion of copper wires in an aqueous medium. The optical absorption in these particles is devoid of the usual Mie resonance at ∼ 580 nm, while maintaining bulk-like lattice periodicity. Under the highest reorientation (largest orientation index), absorption in the ultraviolet region is characterized by distinct and sharp resonant peaks, which are correlated with occupied valence band density of state (DOS) from copper clusters, making these truly crystalline particles with atom-like electronic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gates, B. C., Chem. Rev. 95, 511(1995).Google Scholar
2. Alivisatos, A. P., J. Phys. Chem. 100, 13226(1996).Google Scholar
3. Beecroft, L. L., and Ober, C. K., Chem. Mater. 9, 1302(1997).Google Scholar
4. Vaidya, S., and Sinha, A. K., Thin Solid Films 75, 253(1981).Google Scholar
5. Weller, D., Moser, A., Folks, L., Best, M. E., Lee, W., Toney, M. F., Schwickert, M., Thiele, J.-U., and Doerner, M. F., IEEE Trans. on Magnetics 36, 10(2000).Google Scholar
6. Averitt, R. D., Westcott, S. L., and Halas, N. J., J. Opt. Soc. Am. B 16, 1824(1999).Google Scholar
7. Pileni, M. P., and Lisiecki, I., Colloids and Surfaces A: Phsicochem. Eng. Aspects 80, 63(1993).Google Scholar
8. Mishina, E. D., Nagai, K., and NakaBayashi, S., Nano Lett. 1, 401(2001).Google Scholar
9. Lin, D., Wang, G. X., Srivatsan, T. S., Al-Hajari, M., and Petraroli, M., Matter. Lett. 53, 333(2002)Google Scholar
10. Li, C.-M., Lei, H., Tang, Y.-J., Luo, J.-S., Liu, W., and Chen, Z.-M., Nanotechnology 15, 1866(2004).Google Scholar
11. Petit, C., Lixon, P., and Pileni, M. P., J. Phys. Chem. 97, 12974(1993).Google Scholar
12. Zhang, Y. C., Xing, R., and Hu, X. Y., Journal of Crystal Growth 273, 280(2004).Google Scholar
13. Sen, P., Ghosh, J., Abdullah, A., Kumar, P., and Vandana, , Proc. Indian Acad. Sci. (Chem. Sci.) 115, 499(2003).Google Scholar
14. Vandana, , and Sen, P., J. Phys.: Condens. Matter 17, 5327(2005).Google Scholar
15. Yoshimura, S., Yoshihara, S., Shirakashi, T., and Sato, E., Electrochim. Acta 39, 589(1994).Google Scholar
16. Papavassiliout, G. C., and Kokkinakist, Th., J. Phys. F: Metal Phys. 4, L67 (1974).Google Scholar
17. Pettiette, C. L., Yang, S. H., Craycraft, M. J., Conceicao, J., Laaksonen, R. T., Cheshnovsky, O., and Smalley, R. E., J. Chem. Phys. 88, 5377(1988).Google Scholar
18. Cheshnovsky, O., Taylor, K. J., Conceicao, J., and Smalley, R. E., Phys. Rev. Lett. 64 1785(1990).Google Scholar