Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-19T13:37:33.811Z Has data issue: false hasContentIssue false

Synthesis, Characterization and Properties of Ionic Metal—Fullerene Adducts

Published online by Cambridge University Press:  22 February 2011

Shaoming Huang
Affiliation:
Chemistry Department, Nanjing University, Nanjing 210008, P. R. China
Changzheng Yang
Affiliation:
Chemistry Department, Nanjing University, Nanjing 210008, P. R. China
Xuehai Yu
Affiliation:
Chemistry Department, Nanjing University, Nanjing 210008, P. R. China
Get access

Abstract

Ionic metal-fullerene adducts C60M ( M = Li+, Mg2+, Ca2+, Sr2+, Ba2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, A13+ Ag+, Ce3+ ) are synthesized by reaction of watersoluble C60Lin with metal salt. 13C NMR of C60Li in D20 gives a sharp peak at 171.44 ppm which is much higher than the chemical shift of C60 in benzene ( 142.98 ppm ). Elemental analysis suggests the state of C60 in the adducts is C605-. ESR spectra of the adducts show a strong narrow peak at 9=2.001. UV-Vis and IR spectra of those adducts are completely different from those of C60. Magnetic measurement indicates that C60Li, C60Ce are antiferromagnetism and C60Fe adducts is ferromagnetism in the range of 150–300 K. But C60Fe adduct becomes paramagnetism when temperature is lower than 150 K. Mossbauer spectroscopy indicates Fe3+ in C60Fe adduct is Fe3+ (I.S.=0.30 mm/s, Q.S.=0.67 mm/s). The experimental results strongly suggest that C605- is a stable single free radical polyanion of fullerene which is a weak acid radical and possesses the similar properties with general inorganic anion. This is the first report on the synthesis and properties of air-stable and water-soluble polyanion of fullerene( C605-). A method for preparing metal-fullerene adducts has been developed, and many unusual properties of the adducts are found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roth, L.M., Huang, Y. et al. J. Am. Chem. Soc. 113 8186 (1991)Google Scholar
2. Ross, M.M Callahan, J.H., J. Phys. Chem., 95:. 5726 (1991)Google Scholar
3. Chai, Y., Guo, T., Jin, C. et al. , J. Phys. Chem 95, 7568 (1991)Google Scholar
4. Pradeep, T., Kulkarni, G.U. et al. , J. Am. Chem. Soc., 114, 2272 (1992)Google Scholar
5. Hawkins, J.M., Meyer, A, Lewis, T.A., Loren, S., Hollander, F.J. Science, 252, 312(1991)Google Scholar
6. Fagan, P.J., Calabrese, J.C. Malone, B., Science 252 1160 (1991)Google Scholar
7. Hebard, A.F., Rosseinsiy, M.J. et al. , Nature 356, 600 (1991)Google Scholar
8. Holczer, K., Klein, O. Luang, S-N.. et al. Science 252, 1154 (1991)Google Scholar
9. Rosseinsky, M.J., Ramirez, A.A. et al. , Phys. Rev. lett. 66, 2830 (1991)Google Scholar
10. Murphy, D.W. et al. , J. Phys. Chem. Solid 53 1321 (1902)Google Scholar
11. Tanigaki, K., Hirosawa, I. et al. , Chem. Phys. Lett. 203, 33 (1993)Google Scholar
12. Chabre, Y. et al. , J. Am. Chem. Soc., 114, 764(1992)Google Scholar
13. Yildirim, T., Zhou, O. et al. , Nature, 360, 568 (1992)Google Scholar
14. Haddon, R.C. Kochanskj, G.P. et al. , Science 258 16 6 (1992)Google Scholar
15. Chen, Y., Stepniak, F. et al. , Phys. Rev. B 45 8A45 (1992)Google Scholar
16. Kortan, A.R. Kopylov, N. et al. , Nature 366, 566 (1992)Google Scholar
17. Beausch, J.W. Pradash, G.K. and Olah, G.A., Chem. Soc., 113, 3205 (1991)Google Scholar
18. Haymet, A.D.J., Chem. Phys. Lett., 122, 421 (1985)Google Scholar
19. Haddon, R.C., Brus, L.E., Raghavarchi, K., Chem. Phys. Lett. 125 459 (1986)Google Scholar
20. Disch, R.L., Schulmam, J.M., Chem Phys. Lett. 125, 465 (1986)Google Scholar
21. Scuseria, G.E. Chem. Phys. Lett., 17 423(1991)Google Scholar
22. Dubois, D., Kadish, K.A. et al. J. Am. Chem. Soc., 113, 4364 (1991)Google Scholar
23. Haufler, R.E., Conceicao, J., Chibante, L.P.F. et al. , J. Phys. Chem. 94, 8634(1990)Google Scholar
24. Allemand, M. Koch, A., Wudl, F. et al. J Am. Chem. Soc. 113 100 (1991)Google Scholar
25. Cox, f.M., Behal, S., Disko, M. et al. , J. Am. Chem Soc.,113 240 (1981)Google Scholar
26. Dubois, D., Moninot, G., Kutner, W. Jones, M. T. Kadish, K.M., J. Phys. Chemm 96,7137(1992)Google Scholar
27. Miller, B., Rosamilia, J.M. et al. , J. Electrochem. Soc.,139, 194 (1992)Google Scholar
28. Xie, Q.S., Perez-Cordero, E., and Echegoyea, L., J. Am. Chem. Soc., 114, 3978 (1992)Google Scholar
29. Koh, B.W., Dubois, D., Kutner, W., Jones, M.T. Kadish, K.M., J. Phys. Chem., 96,4163(1692)Google Scholar
30. Greaney, M.A. and Gorun, S.M., J. Phys. Chem., 95, 7142 (1991)Google Scholar
31. Gasyna, Z., Andrews, L. and Schatz, P., J. Phys. Chem 96 152 (1992)Google Scholar
32. Dubois, D., Jones, M.T. Kadish, K.M., J. Am. Chem. Soc., 114 6446 (1992)Google Scholar
33. Dubois, D. and Kaaish, K.M., J. Am. Chem. Soc., 113, 7774 (1991)Google Scholar
34. Tanigaki, K., Hirosawa, I. et al. , Nature 356, 419 (1992)Google Scholar