Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T16:15:17.933Z Has data issue: false hasContentIssue false

Synthesis of oxygen-free nanosized InN by pulse discharge

Published online by Cambridge University Press:  21 March 2011

Wei-Dong Yang
Affiliation:
State Key Joint Laboratory for Materials Modification by Triple Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 Department of Physics, Center for Surface Analysis and Research, Hong Kong Baptist University Kowloon Tong, Hong Kong
K.W. Cheah
Affiliation:
Department of Physics, Center for Surface Analysis and Research, Hong Kong Baptist University Kowloon Tong, Hong Kong
Pei-Nan Wang
Affiliation:
State Key Joint Laboratory for Materials Modification by Triple Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433
Fu-Ming Li
Affiliation:
State Key Joint Laboratory for Materials Modification by Triple Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433
Get access

Abstract

Oxygen-free nanosized InN was synthesized by pulse discharge. NH3/N2 mixture and bulk indium were used as nitrogen source and discharge cathode, respectively. Optical emission spectra show that N2 and NH3 were highly dissociated in the discharge and oxygen could be eliminated effectively. A comparison was made among samples produced in the discharge of N2, NH3 and N2/NH3, respectively. The XPS was used to determine the composition of the synthesized materials. Only In-N was produced when N2/NH3 was used as the discharge gas, whereas indium oxide was found in the case using N2 or NH3 as the discharge gas. The size of the produced InN was between 5 and 200 nm. A broad band with a blue shift of 150 nm from that of bulk InN was detected in the photoluminescence of the produced nanosized InN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992)Google Scholar
[2] Edgar, J. H., J. Mater, Res. 7, 235 (1992)Google Scholar
[3] Strite, S., Lin, M. E., and Morkoc, H., Thin Solid Film. 231, 197 (1993)Google Scholar
[4] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996)Google Scholar
[5] Shimada, S., Yoshimatsu, M., Nagai, H., Suzuki, M., and Komaki, H., Thin Solid Film 370 (1-2), 137 (2000)Google Scholar
[6] Shalish, I., Shapira, Y., Burstein, L., and Salzman, J., J.Appl.Phys. 89, 390 (2001)Google Scholar
[7] Oila, J., Ranki, V., Kivioja, J., Saarinen, K., Hautojarvi, P., Likonen, J., Baranowski, J. M., Pakula, K., Suski, T., Leszczynski, M., and Grzegory, I., Phys. Rev. B 63, 045205–1 (2001)Google Scholar
[8] Shamrell, RT., Parman, C., Optical Materials 13(3), 289 (1999)Google Scholar
[9] Kumar, S., Motlan, LM., and Tansley, TL., Jnp. J. Appl. Phys. 35(4A), 2261 (1996)Google Scholar
[10] McCluskey, M. D., Johnson, N. M., Walle, C. G. Van de, Bour, D. P., Kneissl, M., and Walukiewicz, W., Phys. Rev. Lett. 80, 4008 (1998)Google Scholar
[11] Wang, X. C., Xu, S. J., Chua, S. J., Li, K., Zhang, X. H., Zhang, Z. H., Chong, K. B., and Zhang, X., Appl. Phys. Lett. 74, 818 (1999)Google Scholar
[12] Nostrand, J. E. Van, Solomon, J., Saxler, A., Xie, Q.-H., Reynolds, D. C., and Look, D. C., J. Appl. Phys. 87, 8766 (2000)Google Scholar
[13] Popovici, G., Kim, W., Botchkarev, A., Tang, H., Morkoc, H., and Solomon, J., Appl. Phys. Lett. 71, 3385 (1997)Google Scholar
[14] Elsass, C. R., Mates, T., Heying, B., Poblenz, C., Fini, P., Petroff, P. M., Denbaars, S. P., and Speck, J. S., Appl. Phys. Lett. 77, 3167 (2000)Google Scholar
[15] Sharma, A. K. and Narayan, J., Inter. Mater. Rev. 42, 137 (1997)Google Scholar
[16] Yang, W. D., Wang, P. N., Liu, Z. P., Mi, L., Chen, S. C., and Li, F. M., J. Phys. D: Appl. Phys. 33, 3223 (2000)Google Scholar
[17] O'Leary, S. K., Foutz, B. E., Shur, M. S., Bhapkar, U. V., and Eastman, L. F., J. Appl. Phys. 83, 826 (1998)Google Scholar
[18] Trainer, J. W. and Rose, K., J. Electron. Mater. 3, 821 (1974)Google Scholar
[19] Lu, H., Schaff, W. J., Hwang, J., Wu, H., Yeo, W., Pharkya, A., and Eastman, L. F., Appl. Phys. Lett. 77, 2548 (2000)Google Scholar
[20] Lee, M. C., Lin, H. C., Pan, Y. C., Shu, C. K., Ou, J., Chen, W. H., and Chen, W. K., Appl. Phys. Lett. 73, 2606 (1998)Google Scholar
[21] Pan, J. S., Wee, A. T. S., Huan, C. H. A., Tan, H. S., and Tan, K. L., J. Phys. D: Appl. Phys. 29, 2997 (1996)Google Scholar
[22] Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray photoelectron spectroscopy ed. Chastain, J. (Perkin-Elmer Corporation, Eden Prairie, Minnesota) (1992)Google Scholar
[23] Wang, P. N., Pan, Q., Cheung, N. H. and Chen, S. C., Appl. Phys. A 67, 233 (1998)Google Scholar
[24] Service, R.F., Science, 271 (1996) 920 Google Scholar
[25] Xia, J. B., Cheah, K. W., Phys. Rev. B 55, 15688 (1997)Google Scholar
[26] Madelung, O., Semiconductors: Group IV Elements and III-V Compounds, Berlin, Springer-Verlag Berlin Heidelberg, (1991)Google Scholar